Skip to main content

Molecular Beam Scattering Experiments On Species Of Atmospheric Relevance: Potential Energy Surfaces For Clusters And Quantum Mechanical Prediction Of Spectral Features

  • Conference paper
Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere

Abstract

Accurate intermolecular potential energy surfaces for the major compo- nents of the atmosphere, leading to the characterization of the O2-O2, N2-N2 and N2-O2 dimers, have been obtained from the analysis of scattering experiments from our laboratory, also exploiting where avail- able second virial coefficient data. A harmonic expansion functional form describes the geometries of the dimers and accounts for the rel- ative contributions to the intermolecular interaction from components of different nature. For O2-O2, singlet, triplet and quintet surfaces are obtained accounting for the role of spin-spin coupling. The new sur- faces allow the full characterization of structure and internal dynamics of the clusters, whose bound states and eigenfunctions are obtained by exact quantum mechanics. Besides the information on the nature of the bond, these results can be of use in modelling the role of dimers in air and the calculated rotovibrational levels provide a guidance for the analysis of spectra, thus establishing the ground for atmospheric monitoring. The same approach is currently being extended to simple hydrocarbons and water molecules interacting with rare gas atoms or simple molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquilanti, V., Ascenzi, D., Bartolomei, M., Cappelletti, D., Cavalli, S., De Cas- tro Vitores, M., and Pirani, F. (1999) Quantum interference scattering of aligned molecules: Bonding in O4 and role of spin coupling, Phys. Rev. Lett., 82, 69–72; Molecular Beam scattering of aligned oxygen molecules. The nature of the bond in the O2- O2 dimer, J. Am. Chem. Soc, 121, 10794–10802.

    Article  Google Scholar 

  2. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., and Pi-rani, F. (2002) The N2-N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer, J. Chem. Phys., 117, 615–627.

    Article  Google Scholar 

  3. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., and Pi- rani, F. (2001) Dimers of the major components of the atmosphere: Realistic po- tential energy surfaces and quantum mechanical prediction of spectral features, Phys. Chem. Chem. Phys., 3, 3891–3894.

    Article  Google Scholar 

  4. Aquilanti, V., Carmona-Novillo, E., and Pirani, F. (2002) Quantum mechanics of molecular oxygen clusters: rotovibrational dimer dynamics from realistic po- tential energy surface, Phys. Chem. Chem. Phys., 4, 4970–4978.

    Article  Google Scholar 

  5. Aquilanti, V., Bartolomei, M., Carmona-Novillo, E., and Pirani, F. (2003) The asymmetric dimer N2-O2: Characterization of the potential energy surface and quantum mechanical calculation of rotovibrational levels, J. Chem. Phys., 118, 2223–2234.

    Article  Google Scholar 

  6. Long, C. A., Henderson, G., and Ewing, G. E. (1973) The infrared spectrum of the (N2)2 van der Waals molecule, Chem. Phys., 2, 485–489.

    Article  Google Scholar 

  7. Cappelletti, D., Vecchiocattivi, F., Pirani, F., Heck, E. L., and Dickinson, A. S. (1998) An intermolecular potential for nitrogen from a multi-property analysis, Mol. Phys., 93, 485–499.

    Article  Google Scholar 

  8. Tennyson, J. and van der Avoird, A. (1982) Quantum dynamics of the van der Waals molecule (N2)2: An ab initio treatment, J. Chem. Phys., 77, 5664–5681.

    Article  Google Scholar 

  9. van der Avoird, A., Wormer, P. E. S., and Jansen, A. P. J. (1986) An improved intermolecular potential for nitrogen, J. Chem. Phys., 84, 1629–1635.

    Article  Google Scholar 

  10. Couronne, O. and Ellinger, Y. (1999) An ab initio and DFT study of (N2)2 dimers, Chem. Phys. Lett., 306, 71–77.

    Article  Google Scholar 

  11. Wada, A., Kanamori, H., and Iwata, S. (1998) Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion, J. Chem. Phys., 109, 9434–9438.

    Article  Google Scholar 

  12. Hamdani, A.H., Shen, A., Dong, Y., Gao, H., and Ma, Z. (2000) Theoretical and experimental research on excimer like (N2)2 dimer: potential energy curves and spectra, Chem. Phys. Lett., 325, 610–618.

    Article  Google Scholar 

  13. Uhlík, F., Slanina, Z., and Hinchliffe, A. (1993) Computational studies of atmo- spheric chemistry species. Part VI. An ab initio correlated study of structure, energetics and vibrations of (N2)2, J. Mol. Struct. (Theochem), 282, 271–275.

    Article  Google Scholar 

  14. Stallcop, J. R. and Partridge, H. (1997) The N2-N2 potential energy surface, Chem. Phys. Lett., 281, 212–220.

    Article  Google Scholar 

  15. Slanina, Z., Uhlík, F., and De Almeida, W. B. (1994) A computational thermo- dynamic evaluation of the altitude profiles of (N2)2, N2-O2, and (O2)2 in the Earth’s atmosphere, Thermochimica Acta, 231, 55–60.

    Article  Google Scholar 

  16. Ewing, G. E. and Trusler, J. P. M. (1992) Second acoustic virial coefficients of nitrogen between 80 and 373 K, Physica A, 184, 415–436.

    Article  Google Scholar 

  17. Brewer, A. J. and Vaughn, J. W. (1969) Measurement and correlation of some interaction second virial coefficients from -125° to 50°C, J. Chem. Phys., 50, 2960–2968.

    Article  Google Scholar 

  18. Hall, K. R. and Iglesias-Silva, G. A. (1994) Cross second virial coefficients for the system N2 + O2 and H2O + O2, J. Chem. Eng. Data, 39, 873–875.

    Article  Google Scholar 

  19. Aquilanti, V., Ascenzi, D., Cappelletti, D., and Pirani, F. (1994) Velocity depen- dence of collisional alignment of oxygen molecules in gaseous expansions, Nature (London), 371, 399–402.

    Article  Google Scholar 

  20. Green, S. (1975) Rotational excitation in H2-H2 collisions: Close-coupling calcu- lations, J. Chem. Phys., 62, 2271–2277.

    Article  Google Scholar 

  21. Pirani, F., Cappelletti, D., and Liuti, G. (2001) Range, strength and anisotropy of intermolecular forces in atom-molecule systems: an atom-bond pairwise addi- tivity approach, Chem. Phys. Lett., 350 286–296.

    Article  Google Scholar 

  22. Hutson, J.M. BOUND, Computer Code, Version 5 (1993), distributed by Col- laborative Computational Project no. 6 of the Science and Engeneering Research Council (UK).

    Google Scholar 

  23. Hutson, J. M. (1994) Coupled channel methods for solving the bound-state Schrödinger equation, Comp. Phys. Comm., 84, 1–18.

    Article  Google Scholar 

  24. Bussery-Honvault, B. and Veyret, V. (1999) Quantum mechanical study of the vibrational-rotational structure of [O2(3Σ- g)]2, Phys. Chem. Chem. Phys., 1, 3387–3393.

    Article  Google Scholar 

  25. Long, C. A. and Ewing G.E. (1971) The infrared spectrum of bound state oxy- gen dimers in the gas phase, Chem. Phys. Lett., 9, 225–229; (1973) Spectro- scopic investigation of van der Waals molecules. I. The infrared and visible spec- tra of (O2)2, J. Chem. Phys., 58, 4824–4834; (1975) Structure and properties of van der Waals molecules, Acc. Chem. Res., 8, 185–192.

    Article  Google Scholar 

  26. Campargue, A., Biennier, L., Kachanov, A., Jost, R., Bussery-Honvault, B., Veyret, V., Churassy, S., and Bacis, R. (1998) Rotationally resolved absortion spectrum of the O2 dimer in the visible range, Chem. Phys. Lett., 288, 734–742. Biennier, L., Romanini, D., Kachanov, A., Campargue, A., Bussery- Honvault, B., and Bacis, R. (2000) Structure and rovibrational analysis of the [O2(1Δg)υ=0]2→ [O2(3Σ- g) υ=0]2 transition of the O2 dimer, J. Chem. Phys., 14, 6309–6321.

    Article  Google Scholar 

  27. Pfeilsticker, K., Bösch, H., Camy-Peyret, C, Fitzenberger, R., Harder, H., and Osterkamp, H. (2001) First atmospheric profile measurements of UV/visible O4 absorption band intensities: Implications for the spectroscopy and the formation enthalpy of the O2- O2 dimer, Geophys. Res. Lett., 28, 4595–4598.

    Article  Google Scholar 

  28. Gorelli, F. A., Ulivi, L., Santoro, M., and Bini, R. (1999) The epsilon phase of solid oxygen: evidence of an O4 molecule lattice, Phys. Rev. Lett., 83, 4093–4096.

    Article  Google Scholar 

  29. Cappelletti, D., Bartolomei, M., Pirani, F., and Aquilanti, V. (2002) Molecular beam scattering experiments on benzene-rare gas systems: probing the potential energy surfaces for the C6H6-He, -Ne and -Ar dimers, J. Phys. Chem., 106, 10764–10772.

    Article  Google Scholar 

  30. Sabidó, M. (2001) Master Degree Thesis, Universitá di Perugia & Universitat de Barcelona.

    Google Scholar 

  31. Bartolomei, M. (2002) Ph.D. Thesis, Universitá di Perugia.

    Google Scholar 

  32. Pirani, F., Porrini, M., Cavalli, S., Bartolomei, M., and Cappelletti, D. (2003) Potential energy surfaces for the benzene-rare gas systems, Chem. Phys. Lett., 367, 405–413.

    Article  Google Scholar 

  33. Pirani, F., Cappelletti, D., Bartolomei, M., Aquilanti, V., Scotoni, M., Vescovi, M., Ascenzi, D., and Bassi, D. (2001) Orientation of benzene in supersonic expansions, probed by IR-laser absorption and by molecular beam scattering, Phys. Rev. Lett, 86, 5035–5038.

    Article  Google Scholar 

  34. Pack, R. T. (1983) First quantum corrections to second virial coefficients for anisotropic interactions: Simple, corrected formula, J. Chem. Phys., 78, 7217–7222.

    Article  Google Scholar 

  35. Hodges, M.P., Wheatley, R. J., and Harvey, A. H. (2002) Intermolecular poten- tial and second virial coefficient for the water-helium complex, J. Chem. Phys., 116, 1397–1405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Aquilanti, V. et al. (2003). Molecular Beam Scattering Experiments On Species Of Atmospheric Relevance: Potential Energy Surfaces For Clusters And Quantum Mechanical Prediction Of Spectral Features. In: Camy-Peyret, C., Vigasin, A.A. (eds) Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0025-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0025-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1596-0

  • Online ISBN: 978-94-010-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics