Skip to main content

Theory of the Electronic Structure of Excited States in Small Systems with Numerical Applications to Atomic States

  • Chapter
Excited States in Quantum Chemistry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 46))

Abstract

In this lecture we discuss an approach to the understanding and efficient calculation of electron correlation of valence or inner hole excited states in atoms and small molecules. We start with the formal subshell cluster expansion of the wave-function and we analyze the various correlation effects which appear in the wave-function whose form is dictated by first order perturbation theory. I.e. only single and pair symmetry adapted correlation functions are considered. This analysis allows: 1) The formal decoupling, to a good approximation, of the subshell correlation vectors into groups and their economic computation from small Variational Configuration-Interaction (VCI) procedures. 2) The systematic optimization of the different for each group virtual one-electron functions—expressed in terms of STO’s or GTO’s—by minimizing the corresponding to each group energy functional. 3) The consequent determination of compact but accurate total wave-functions from basis sets which contain the Hartree-Fock and only a few more virtual orbitals. 4) The recognition and isolation of important for electronic spectroscopy and chemical bonding correlation effects from those which contribute mainly to total energies. 5) The recognition of the importance of triple and quadruple correlation effects for certain inner hole excited states, even in small systems. We present previously unpublished numerical results on a) the position of the H- 2P2 3P metastable state whose study supports our suggestion that variationally optimized (VO) one-electron basis sets are competitive with rij dependent basis sets in terms of fast convergence. b) The position of the H-- 2p3 4S° state which is found to be unbound. c) The pair correlations of C where reasonably accurate calculations indicate that VO-GTO virtuals are reasonably competitive with VO-STO virtuals. This suggests that the size of current molecular calculations using Gaussians can be reduced considerably at no expense of accuracy, d) The effect of electron correlation on the term structure of Ni III, of current importance in solid state physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Beck and C.A. Nicolaides, Int. J. Qu. Chem. S8, 17, (1973).

    Google Scholar 

  2. D.R. Beck and C.A. Nicolaides, Int. J. Qu. Chem. S10, 119, (1976).

    Google Scholar 

  3. R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 35, 33, (1974).

    Article  CAS  Google Scholar 

  4. R.J. Buenker and S.D. Peyerimhoff, this volume.

    Google Scholar 

  5. G. Das and A.C. Wahl, J. Chem. Phys. 50, 3532, (1972)

    Article  Google Scholar 

  6. S.L. Guberman, J. Chem. Phys. 67, 1125 (1977).

    Article  CAS  Google Scholar 

  7. R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letts. 34, 225, (1975).

    Article  CAS  Google Scholar 

  8. C. Froese-Fischer, Comp. Phys. Comm. 4, 107, (1972).

    Article  Google Scholar 

  9. H.J. Silverstone, J. Chem. Phys. 67, 4172, (1977).

    Article  CAS  Google Scholar 

  10. C.A. Nicolaides and D.R. Beck, Chem. Phys. Letts. 36, 79, (1975).

    Article  CAS  Google Scholar 

  11. D.R. Beck and C.A. Nicolaides, Phys. Letts. 65A, 293, (1978).

    Article  CAS  Google Scholar 

  12. C.A. Nicolaides and D.R. Beck, “Time Dependence, Complex Scaling and the Calculation of Resonances in Many-Electron Systems”, to be published in the Volume “Complex Scaling in the Spectral Theory of the Hamiltonian”, ed. by P.O. Löwdin (Int. J. Qu, Chem. supplement volume 1978).

    Google Scholar 

  13. B. Kahn and G.E. Uhlenbeck, Physica 5, 399, (1938); the term “linked cluster” apparently first appeared in this article.

    Article  CAS  Google Scholar 

  14. V. Fock, M. Vesselov and M. Petrashen, J. Exp. Theor. Phys. (U.S.S.R.) 10, 723, (1940).

    Google Scholar 

  15. F. Iwamoto and M. Yamada, Prog. Theor. Phys. 17, 543, (1957).

    Article  Google Scholar 

  16. W. Brenig, Nucl. Phys. 4, 363, (1957).

    Article  Google Scholar 

  17. R. Brout, Phys. Rev. 111, 1324, (1958).

    Article  Google Scholar 

  18. O. Sinanoglu, J. Chem. Phys. 36, 706, (1962).

    Article  CAS  Google Scholar 

  19. L. Szasz, Phys. Rev. 126, 169, (1962).

    Article  CAS  Google Scholar 

  20. H.J. Silverstone and O. Sinanoğlu, J. Chem. Phys. 44, 1898, 3608, (1966).

    Article  CAS  Google Scholar 

  21. J. Cizek, J. Chem. Phys. 45, 4256, (1966)

    Article  CAS  Google Scholar 

  22. J. Cizek, Adv. Chem. Phys. 14, 35, (1969).

    Article  CAS  Google Scholar 

  23. R.K. Nesbet, Phys. Rev. 155, 56, (1957).

    Article  Google Scholar 

  24. C. Møller and M.S. Plesset, Phys. Rev. 46, 618, (1934).

    Article  Google Scholar 

  25. O. Sinanoğlu, Proc. R. Soc. (london) A260, 379, (1961).

    Google Scholar 

  26. C.F. Bender and E.R. Davidson, Phys. Rev. 183, 23, (1969).

    Article  CAS  Google Scholar 

  27. A.N. Weiss, Phys. Rev. A3, 126, (1971).

    Google Scholar 

  28. J.W. Viers, F.E. Harris and H.F. Schaefer III, Phys. Rev. A1, 24, (1970).

    Google Scholar 

  29. C.F. Bunge, Chem. Phys. Letts. 42, 141, (1976).

    Article  CAS  Google Scholar 

  30. F. Sasaki and M. Yoshimine, Phys. Rev. A9, 26, (1974).

    Google Scholar 

  31. CM. Moser and R.K. Nesbet, Phys. Rev. A6, 1710, (1972).

    Google Scholar 

  32. R. Ahlrichs, H. Lischka, B. Zurawski and W. Kutzelnigg, J. Chem. Phys. 63, 4685, (1975)

    Article  CAS  Google Scholar 

  33. W. Meyer, J. Chem. Phys. 58, 1017, (1973) and references therein.

    Article  CAS  Google Scholar 

  34. F.W. Byron and C.J. Joachain, Phys. Rev. 157, 7, (1967).

    Article  CAS  Google Scholar 

  35. C. Froese-Fischer and K.M.S. Saxena, Phys. Rev. A9, 1498, (1974).

    Google Scholar 

  36. H.P. Kelly and A. Ron, Phys. Rev. A4, 11, (1971).

    Google Scholar 

  37. J. Paldus, J. Cizek and I. Shavitt, Phys. Rev. A1, 50, (1972).

    Google Scholar 

  38. R.J. Buenker, S.D. Peyerimhoff and W. Butscher, Mol. Phys. 35, 771, (1978).

    Article  CAS  Google Scholar 

  39. R.E. Knight, Phys. Rev. 183, 45, (1969).

    Article  CAS  Google Scholar 

  40. A. Pipano and I. Shavitt, Int. J. Qu. Chem. II, 741, (1968).

    Article  Google Scholar 

  41. C. Froese-Fischer, J. Phys. B6, 1933, (1973).

    Google Scholar 

  42. H.P. Kelly, Phys. Rev. 144, 39, (1966).

    Article  CAS  Google Scholar 

  43. I. Oksüz and O. Sinanoğlu, Phys. Rev. 181, 42 (1969).

    Article  Google Scholar 

  44. C.A. Nicolaides and D.R. Beck, J. Phys. B6, 535, (1973).

    Google Scholar 

  45. D.R. Beck and O. Sinanoğlu, Phys. Rev. Letts. 28, 945, (1972).

    Article  CAS  Google Scholar 

  46. H.F. Schaeffer III, J. Chem. Phys. 55, 176, (1971).

    Article  Google Scholar 

  47. C.A. Nicolaides and D.R. Beck, J. Chem. Phys. 66, 1982, (1977).

    Article  CAS  Google Scholar 

  48. D.R. Beck and C.A. Nicolaides, Phys. Letts. 61A, 227, (1977).

    Article  CAS  Google Scholar 

  49. C.A. Nicolaides and D.R. Beck, J. Phys. B9, 1259, (1976).

    Google Scholar 

  50. R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letts. 36, 415, (1975).

    Article  CAS  Google Scholar 

  51. E.R. Cooper and H.P. Kelly, Phys. Rev. A7, 38, (1973).

    Google Scholar 

  52. E.R. Davidson, in “The World of Quantum Chemistry”, eds. R. Dandel and B. Pullman, Reidel Publ. Co. Dordrecht, (1974).

    Google Scholar 

  53. A. Mennier, B. Levy and G. Berthier, Int. J. Qu. Chem. 10, 1061, (1976).

    Article  Google Scholar 

  54. F. Sasaki, Int. J. Qu. Chem. S11, 125, (1977).

    Google Scholar 

  55. R.J. Bartlett and I. Shavitt, Int. J. Qu. Chem. S11, 165, (1977).

    Google Scholar 

  56. T.A. Carlson and M.O. Krause, Phys. Rev. Letts. 17, 1079, (1966).

    Article  CAS  Google Scholar 

  57. Y. Komninos, D.R. Beck and C.A. Nicolaides, unpublished.

    Google Scholar 

  58. L.E. McMurchie and E.R. Davidson, J. Chem. Phys. 66, 2959, (1977).

    Article  CAS  Google Scholar 

  59. R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. 8, 324, (1975).

    Article  CAS  Google Scholar 

  60. J. Reader, Phys. Rev. A7, 1431, (1973).

    Google Scholar 

  61. D.A. Shirley et.al., “Electron-Correlation Satellites in Electron Spectroscopy”, preprint, presented at the 2nd Int. Conf. on Inner Shell Ionization Phenomena, Preiburg, (1976).

    Google Scholar 

  62. E.K. Viinikka and Y. Ohrn, Phys. Rev. B11, 4168, (1975).

    Google Scholar 

  63. L.E. Nitzsche and E.R. Davidson, J. Chem. Phys. 68, 3103, (1978).

    Article  CAS  Google Scholar 

  64. C.C. J. Roothaan and P.S. Bagus, Methods of Comp. Phys. 2, B. Alder, S. Fernbach and M. Rotenberg, eds. Acad. Press (1963).

    Google Scholar 

  65. E.A. McCullough, Jr., J. Chem. Phys. 62, 3991, (1975).

    Article  CAS  Google Scholar 

  66. C.A. Nicolaides, Phys. Rev. A6, 2078, (1972)

    Google Scholar 

  67. C.A. Nicolaides, Nucl Inst. Methods 110, 231 (1973).

    Article  CAS  Google Scholar 

  68. D.R. Beck and C.A. Nicolaides, Phys. Rev. Letts, submitted May 1978.

    Google Scholar 

  69. C.A. Nicolaides and D.R. Beck, this volume.

    Google Scholar 

  70. E.R. Davidson and L.Z. Stenkamp, Int. J. Qu. Chem. S10, 21 (1976).

    Google Scholar 

  71. L.A. Yaffe and W.A. Goddard III, Phys. Rev. A13, 1682, (1976).

    Google Scholar 

  72. J. Hinze and C.C.J. Roothaan, Supp. Prog. Theor. Phys. 40, 37, (1967).

    Article  Google Scholar 

  73. W.J. Hunt and W.A. Goddard III, Chem. Phys. Letts. 3, 414, (1969).

    Article  CAS  Google Scholar 

  74. E.R. Davidson, “Reduced Density Matrices in Quantum Chemistry”, Acad. Press (N.Y.) (1976);

    Google Scholar 

  75. C.F. Bender and E.R. Davidson J. Phys. Chem. 70, 2675 (1966).

    Article  CAS  Google Scholar 

  76. C. Edmiston and M. Krauss, J. Chem. Phys. 45, 1833 (1966).

    Article  CAS  Google Scholar 

  77. e.g. D.R. Beck, J. Chem. Phys. 51, 2171 (1969).

    Article  CAS  Google Scholar 

  78. D.R. Beck and C.A. Nicolaides, unpublished.

    Google Scholar 

  79. D.R. Beck, C.A. Nicolaides and J.I. Musher, Phys. Rev. A10, 1522 (1974).

    Google Scholar 

  80. C.A. Nicolaides and D.R. Beck, Can. J. Phys. 53, 1224 (1975).

    Article  CAS  Google Scholar 

  81. H.F. King et. al., J. Chem. Phys. 47, 1936 (1967).

    Article  CAS  Google Scholar 

  82. H.F. Schaefer and F.E. Harris, J. Comp. Phys. 3, 217 (1968).

    Article  Google Scholar 

  83. A. Bunge, J. Chem. Phys. 53, 20, (1970).

    Article  CAS  Google Scholar 

  84. D.R. Beck and H. Odabasi, Ann. Phys. 67, 274, (1971).

    Article  CAS  Google Scholar 

  85. G.W.F. Drake, Phys. Rev. Letts. 24, 126, (1970).

    Article  CAS  Google Scholar 

  86. R. Schnitzer and M. Auber, J. Chem. Phys. 64, 2466 (1976).

    Article  CAS  Google Scholar 

  87. W. Aberth, J. Chem. Phys. 65, 4329 (1976)

    Article  CAS  Google Scholar 

  88. M.L. Vestal, J. Chem. Phys. 65 p. 4331

    Google Scholar 

  89. J. Durup, ibid. p. 4331

    Google Scholar 

  90. R. Schnitzer and M. Aubar, ibid. p. 4432.

    Google Scholar 

  91. J.F. Liebman, D.L. Yeager and J. Simons, (Chem. Phys. Letts. 48, 227, (1977)) have added an attractive external potential to introduce binding, in their study of shape resonances.

    Article  CAS  Google Scholar 

  92. S. Huzinaga and A. Hart-Davis, Phys. Rev. 8A, 1734 (1973). Positive eigenvalues were also obtained in certain HF calculations of He- compound states (C.A. Nicolaides, Phys. Rev. A6, 2078 (1972); C.A. Nicolaides, unpublished).

    Google Scholar 

  93. D.R. Yarkony, H.F. Schaefer, III, and C.F. Bender, J. Chem. Phys. 64, 981 (1976).

    Article  CAS  Google Scholar 

  94. C.F. Bunge and A.V. Bunge, “Calculations of Atomic Electron Affinities”, preprint.

    Google Scholar 

  95. A.B. Kunz, this volume; Phys. Rev. B7, 5369 (1973).

    Google Scholar 

  96. D.R. Beck and C.A. Nicolaides, this volume.

    Google Scholar 

  97. C. Froese-Fischer, Can. J. Phys. 49, 1205 (1971).

    Article  Google Scholar 

  98. C.E. Moore, “Atomic Energy Levels Vol II”, NBS circular 467 (1952).

    Google Scholar 

  99. R.L. Kelly and L.J. Palumbo, “Atomic and Ionic Emission Lines below 2000 Å”, NRL Reprint 7 599 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Beck, D.R., Nicolaides, C.A. (1978). Theory of the Electronic Structure of Excited States in Small Systems with Numerical Applications to Atomic States. In: Nicolaides, C.A., Beck, D.R. (eds) Excited States in Quantum Chemistry. NATO Advanced Study Institutes Series, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9902-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9902-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9904-6

  • Online ISBN: 978-94-009-9902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics