Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 54))

  • 359 Accesses

Abstract

Gauge theories have been formulated in 1954 by Yang and Mills [1] as natural non abelian generalizations of Maxwell’s theory of the electromagnetic field. Since the electromagnetic field mediates electromagnetic interactions between charged svstems it was natural to seek for the non abelian analog susceptible to accomodate the non abelian internal symmetries discovered in the realm of elementary particle physics. The naturalness of this construction seems also to have drawn the attention of other physicists who were simultaneously aware of a number of difficulties which remain unsolved even now. As time went, more approximate internal symmetries [2] were discovered in particle physics. Also, a number of fundamental remarks of a technical nature [3] allowed to put gauge theories to practical use. There resulted a net progress in unifying “weak”, “electromagnetic”, [4][5], and “strong” interactions [5] between elementary particles, to such an extent that at present, it has become standard to think about particle physics in terms of gauge theories [6]. The naturalness of these theories has also appeared in mathematics where it constitutes a branch of differential geometry: the study of fiber bundles and connections on them [7], associated with a Lie group G-[4][5][8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.N. Yang, R.L. Mills, P.R. 96,191(1954).

    Article  CAS  Google Scholar 

  2. Nuclear and subnuclear physics exhibit a hierarchy of approximate symmetries: isotopic spin SU(2)s strangeness SU3, charm SU4, nowadays referred to as “flavour” groups. It has turned out however that these are not the groups relevant to modern gauge theories [4][5][8].

    Google Scholar 

  3. P. Higgs, P.L. 12, 132 (1964);

    Google Scholar 

  4. TWB Kibble, P.R. 155, 1554 (1967).

    Article  CAS  Google Scholar 

  5. L.D. Faddeev, V.N. Popov, P.L. 25B, 29 (1967).

    Google Scholar 

  6. G. ’t Hooft, P.R. D14, 3432 (1976).

    Article  Google Scholar 

  7. G. ’t Hooft, N.P. B33, 173 (1971);

    Article  Google Scholar 

  8. G. ’t Hooft, N.P. B35, 167 (1971).

    Article  Google Scholar 

  9. G. ’t Hooft, M. Veltman, N.P. B50, 318 (1972).

    Article  Google Scholar 

  10. C.G. Callan, R.F. Dashen, D.J. Gross, P.R. D19, 1826 (1979).

    CAS  Google Scholar 

  11. S. Weinberg, P.R.L. 19, 1264 (1967).

    Google Scholar 

  12. H. Fritsch, M. Gell-Mann, H. Leutwyler, P.L. 47B, 365(1973),

    Google Scholar 

  13. S. Weinberg, P.R.L. 31, 494 (1973).

    Google Scholar 

  14. Further efforts are currently being pursued to unify strong electromagnetic and weak interactions. One favoured approach consists in having colour SU3xflavour SU2xU(l) as a subgroup of a larger gauge group e.g. SU5:

    Google Scholar 

  15. H. Georgi, S.L. Glashow, P.R.L. 32, 438 (1974).

    Article  CAS  Google Scholar 

  16. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience, New York, 1963 ).

    Google Scholar 

  17. In present day particle physics, G is “colour SU3” of strong interactions X “flavour” SU2LxU(l) of weak and electromagnetic interactions.

    Google Scholar 

  18. J.H. Lowenstein, B. Schroer, P.R. D6, 1556 (1972).

    Google Scholar 

  19. B. Simon: The P(Φ)2 Euclidean quantum field theory Princeton University Press, Princeton (1974).

    Google Scholar 

  20. See however the qualitative discussion of static quark confinement in quantum chromo dynamics (QCD): G.’ t Hooft, N.P. B153, 141 (1979).

    Google Scholar 

  21. A. Belavin, A. Polyakov, A.S. Schwarz, Y. Tyupkin, P.L.B59, 517 (1976).

    Google Scholar 

  22. G. ’t Hooft, Unpublished

    Google Scholar 

  23. R. Jackiw, C. Rebbi, P.R. D14, 517 (1976).

    Google Scholar 

  24. A.S. Schwarz, P.L. B67, 172 (1977).

    Google Scholar 

  25. R. Jackiw, C. Rebbi, P.R.L. B67, 189 (1977).

    Google Scholar 

  26. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Proc. Nat. Ac. Sci.USA 74, 2662 (1977).

    Google Scholar 

  27. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Proc. R. Soc.London, A362, 425 (1978). A.S. Schwarz, C.M.P., 64, 233 (1979).

    Google Scholar 

  28. R. Penrose, Rep. Math. Phys., 12, 65 (1977).

    Google Scholar 

  29. R.S. Ward, P.L. 61A, 81 (1977).

    Google Scholar 

  30. M.F. Atiyah, R.S. Ward, C.M.P., 55, 117 (1977).

    Google Scholar 

  31. M.F. Atiyah, V.G. Drinfeld, W.J. Hitchin, Yu I Manin, P.L.65A, 185 (1978).

    Google Scholar 

  32. V.G. Drinfeld, Yu I Manin, Funct. An. Appl. (in russian),(1979); C.M.P., 63, 177 (1978).

    Google Scholar 

  33. M.F. Atiyah, Lectures given at the Scuola Normale Superiore,Pisa, 1978, to appear.

    Google Scholar 

  34. A. Dovady, J.L. Verdier, ed. E.N.S. Seminar (1978), to appear in Astérisque.

    Google Scholar 

  35. J. Eells, L. Lemaire, Bull. London Math. Soc.10, 1 (1978).

    Google Scholar 

  36. W.D. Garber, S.N.M. Ruijseaars, E. Seiler, D. Burns, Ann.Phys. 119 305 (1979).

    Google Scholar 

  37. A. Perelomov, C.M.P., 63, 237 (1978).

    Google Scholar 

  38. F. Gursey, H.C. Tzé, Yale preprint Oct. (1979).

    Google Scholar 

  39. A.M. Din, W.J. Zakrzewski, CERN preprint TH 2721–2722.

    Google Scholar 

  40. R. Balian, G. Parisi, A. Voros, P.R.L. 41, 1141 (1978).

    Article  Google Scholar 

  41. H.J. Borchers, W.D. Garber, C.M.P., to appear.

    Google Scholar 

  42. B. V.A. Fateev, I.V. Frolov, A.S. Schwarz, N.P. B154, 1 (1979). Berg, M. Liischer, C.M.P., to appear.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Stora, R. (1980). Yang-Mills Fields: Semi Classical Aspects. In: Bardos, C., Bessis, D. (eds) Bifurcation Phenomena in Mathematical Physics and Related Topics. NATO Advanced Study Institutes Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9004-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9004-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9006-7

  • Online ISBN: 978-94-009-9004-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics