Skip to main content

High Affinity Taurine Uptake in Human Blood Platelets

  • Chapter
The Effects of Taurine on Excitable Tissues

Abstract

Taurine is nearly ubiquitous in the body, with the highest concentration in excitable tissue. Although it has been implicated in diseases so diverse as epilepsy (Barbeau and Donaldson, 1974; Barbeau et al., 1975) and congestive heart failure (Huxtable and Bressler, 1974), little is actually known of its physiological function. Since it has a potent depressant action on neurons (Curtis and Watkins, 1965; Curtis et al., 1968; Curtis et al., 1971a; Krnjevic, 1964; Hosli and Tebecis, 1970; Haas and Hösli, 1973; Kaczmarek and Adey, 1974), it has been postulated to function as an inhibitory neurotransmitter in the central nervous system. In support of this postulation, taurine also appears to meet the other criteria necessary for a compound to qualify as a neurotransmitter (Agrawal et al., 1971; Haas and Hösli, 1973; Curtis et al., 1968; Curtis et al., 1971a,b; Hammerstad et al., 1971; Guidotti et al., 1972; Snyder et al., 1973; Starr, 1973; Schmid et al., 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, H. C; Davidson, A. N.; and Kaczmarek, L. K. Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain. Biochem. J., 122, 759–763 (1971).

    PubMed  CAS  Google Scholar 

  • Barbeau, A.; and Donaldson, J. Zinc, taurine and epilepsy. Arch. Neurol, 30, 52–58 (1974).

    PubMed  CAS  Google Scholar 

  • Barbeau, A.; Inoue, N.; Tsukada, Y.; and Butterworth, R. F. Minireview: The neuropharmacology of taurine. Life Sci., 17, 669–678 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P.; Logan, W. J.; and Snyder, S. H. Amino acid neurotransmitter candidates: Sodium dependent high-affinity uptake by unique synaptosomal fractions. Science, 178, 997–998 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P.; Logan, W. J.; and Snyder, S. H. Amino acids as central nervous system transmitters: The influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamic and L-aspartic acids and glycine into central nervous synaptosomes of the rat. J. Neurochem., 21, 1533–1550 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Boullin, D. J.; and O’Brien, R. A. Abnormalities of 5-hydroxytryptamine uptake and binding by blood platelets from children with Down’s syndrome. J. Physiol (London), 212, 287–297 (1971).

    PubMed  CAS  Google Scholar 

  • Curtis, D. R.; Hösli, L.; and Johnston, G. A. R. A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp. Brain Res., 6, 1–18 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R.; Duggan, A. W.; Felix, D.; and Johnston, G. A. R. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain. Res., 32, 69–96 (1971a).

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R.; Duggan, A. W.; Felix, D.; Johnston, G. A. R.; and McLennan, H. Antagonism between bicuculline and GABA in the cat brain. Brain Res., 33, 57–73 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R.; and Watkins, J. C. The pharmacology of amino acids related to gamma-aminobutyric acid. Pharmacol Rev., 17, 347–391 (1965).

    PubMed  CAS  Google Scholar 

  • Ehinger, B. Glial uptake of taurine in the rabbit retina. Brain Res., 60, 512–516 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Gaut, Z. N.; and Nauss, C. B. Uptake of taurine by human blood platelets: A possible model for brain. In Taurine, R. Huxtable and A. Barbeau, eds. Raven Press, New York (1976), pp. 91–98.

    Google Scholar 

  • Green, A. R.; Boullin, D. J.; Masarelli, R.; and Hanin, I. Can the human blood platelet be used as a model for the cholinergic nerve ending? Life Sci., 11, 1049–1058 (1972).

    Article  CAS  Google Scholar 

  • Guidotti, A.; Badiani, G.; and Pepeu, G. Taurine distribution in cat brain. J. Neurochem., 19, 431–435 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L.; and Hösli, L. The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res., 52, 399–402 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Hammerstad, J. P.; Murray, J. E.; and Cutler, R. W. P. Efflux of amino acid neurotransmitters from rat spinal cord slices. II: Factors influencing the electrically induced efflux of 14C-glycine and 3H-GABA. Brain Res., 35, 357–367 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Honegger, C. G.; Krepelka, L. M.; Steiner, M.; and Von Hahn, H. P. Kinetics and subcellular distribution of S35-taurine uptake in rat cerebral cortex slices. Experientia (Basel), 29, 1235–1237 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Hosli, L.; and Tebecis, A. K. Actions of amino acids and convulsants on bulbar reticular neurones. Exp. Brain Res., 11, 111–127 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hruska, R. E.; Huxtable, R. J.; Bressler, R.; and Yamamura, H. I. Sodium dependent high affinity transport of taurine into rat brain synaptosomes. Proc. West. Pharmacol. Soc., 19, 152–156 (1976).

    PubMed  CAS  Google Scholar 

  • Huxtable, R.; and Bressler, R. Taurine concentrations in congestive heart failure. Science, 184, 1187–1188 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L. K.; and Adey, W. R. Factors affecting the release of [14C] taurine from cat brain: The electrical effects of taurine on normal and seizure prone cortex. Brain Res., 76, 83–94 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L. K.; and Davison, A. N. Uptake and release of taurine from rat brain slices. J. Neurochem., 19, 2355–2362 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K. Micro-iontophoretic studies on cortical neurons. Int. Rev. Neurobiol., 7, 41–98 (1964).

    Article  Google Scholar 

  • Lähdesmäki, P.; and Oja, S. S. Effect of Electrical stimulation on the influx and efflux of taurine in brain slices of newborn and adult rats. Exp. Brain Res., 15, 430–438 (1972).

    Article  PubMed  Google Scholar 

  • Lähdesmäki, P.; and Oja, S. S. On the mechanism of taurine transport at brain cell membranes. J. Neurochem., 20, 1411–1417 (1973).

    Article  PubMed  Google Scholar 

  • Lähdesmäki, P.; Pasula, M.; and Oja, S. S. Effect of electrical stimulation and chlorpromazine on the uptake and release of taurine, γ-aminobutyric acid, and glutamic acid in mouse brain synaptosomes. J. Neurochem., 25, 675–680 (1975).

    Article  PubMed  Google Scholar 

  • Lineweaver, H.; and Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  • Murphy, D. L.; and Wyatt, R. J. Reduced monoamine oxidase activity in blood platelets from schizophrenic patients. Nature, 238, 225–226 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Neal, M. J.; Peacock, D. G.; and White, R. D. Kinetic analysis of amino acid uptake by the rat retina in vitro. Br. J. Pharmac, 47, 656P–657P (1973).

    CAS  Google Scholar 

  • Oja, S. S.; Kontro, P.; and Lähdesmäki, P. Transport of taurine in the central nervous system. Adv. Exp. Med. Biol., 69, 237–252 (1976).

    PubMed  CAS  Google Scholar 

  • Paasonen, M. K. Platelet 5-hydroxytryptamine as a model in pharmacology. Am. Med. Exp. Biol. Fenn., 46, 416–422 (1968).

    CAS  Google Scholar 

  • Page, I. H. The possible singular importance of platelets. In Serotonin. YearBook Med. Pub., Inc., Chicago (1968), p. 37.

    Google Scholar 

  • Pletscher, A. Metabolism transfer and storage of 5-hydroxytryptamine in blood platelets. Br. J. Pharmacol. Chemotherap., 32, 1–16 (1968).

    CAS  Google Scholar 

  • Schmid, R.; Sieghart, W.; and Karobath, M. Taurine uptake in synaptosomal fractions of rat cerebral cortex. J. Neurochem., 25, 5–9 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A.; Fosmark, H.; and Svenneby, G. Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res., 116, 158–164 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W.; and Karobath, M. Evidence for specific synaptosomal localization of exogenous accumulated taurine. J. Neurochem., 23, 911–915 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W.; and Karobath, M. Uptake of taurine into subcellular fractions of C-6 glioma cells. J. Neurochem., 26, 981–986 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H.; Young, A. B.; Bennett, J. P.; and Mulder, A. H. Synaptic biochemistry of amino acids. Fed. Proc., 32, 2039–2047 (1973).

    PubMed  CAS  Google Scholar 

  • Solomon, H. H.; Ashley, C; Spirt, N.; and Abrams, W. B. The influence of debrisoquin on the accumulation and metabolism of biogenic amines by the human platelet in vivo and in vitro. Clin. Pharmaco. Exp. Ther., 10, 229–238 (1969).

    CAS  Google Scholar 

  • Starr, M. S. Effects of changes in the ionic composition of the incubation medium on the accumulation and metabolism of 3H-γ amino-butyric acid and 14C-taurine in isolated rat retina. Biochem. Pharmacol, 22, 1693–1700 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Starr, M. S.; and Voaden, M. J. The uptake, metabolism and release of 14C-taurine by rat retina in vitro. Vision Res., 12, 1261–1269 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto, J. A new modification for studying 5-HT uptake by blood platelets: A re-evaluation of tricyclic antidepressants as uptake inhibitors. J. Pharm. Pharmac, 26, 92–100 (1974).

    Article  CAS  Google Scholar 

  • Zieve, P. D.; and Solomon, H. M. The intracellular pH of the human platelet. J. Clin. Invest., 45, 1251–1254(1966).

    Article  PubMed  CAS  Google Scholar 

  • Zieve, P. D.; Solomon, H. M.; and Krevans, J. R. The effect of hematoporphyrin and light on human platelets. J. Cell. Physiol., 67, 271–279 (1966).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Nauss-Karol, C., VanderWende, C. (1981). High Affinity Taurine Uptake in Human Blood Platelets. In: Schaffer, S.W., Baskin, S.I., Kocsis, J.J. (eds) The Effects of Taurine on Excitable Tissues. Monographs of the Physiological Society of Philadelphia, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8093-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8093-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8095-2

  • Online ISBN: 978-94-009-8093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics