Skip to main content

Methodology: the key to understanding periphyton

  • Conference paper
Periphyton of Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 17))

Abstract

The present status of the development of methodology for periphyton research is reviewed with emphasis on needs for current and future research directions. Sampling procedures and methods of assessing the dynamics of biomass changes and population and community productivity are evaluated. The importance of future methodological improvements is stressed as a basis for quantitative determination of the interactions among periphytic components and regulating environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.S. & Stone, W., 1973. Field studies on photosynthesis of Cladophora glomerata (Chlorophyta) in Green Bay, Lake Michigan. Ecology 54: 853–862.

    Article  Google Scholar 

  • Allanson, B.R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwat. Biol. 3: 535–542.

    Article  Google Scholar 

  • Allen, H.L., 1971. Primary productivity, chemoorganotrophy and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.

    Article  Google Scholar 

  • Bott, T.L. & Ritter, F.P., 1981. Benthic algal productivity in a Piedmount stream measured by 14C and dissolved oxygen change procedures. J. Freshwat. Ecol. 1: 267–277.

    Article  CAS  Google Scholar 

  • Castenholz, R. W., 1960. Seasonal changes in the attached algae of freshwater and saline lakes in the lower Grand Coulee, Washington. Limnol. Oceanogr. 5: 1–28.

    Article  Google Scholar 

  • Castenholz, R.W., 1961. An evaluation of a submerged glass slide method of estimating production of attached algae. Verh. Int. Verein. Theor. Angew. Limnol. 14: 155–159.

    Google Scholar 

  • Cattaneo, A., 1978. The microdistribution of epiphytes on the leaves of natural and artificial macrophytes. Br. Phy col. J. 13: 183–188.

    Article  Google Scholar 

  • Cattaneo, A. & Kalff, J., 1978. Seasonal changes on the epi¬phyte community of natural and artificial macrophytes in Lake Memphremagog (Que.-Vt.), Hydrobiol. 60: 135–144.

    Article  Google Scholar 

  • Cattaneo, A. & Kalff, J., 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280–289.

    Article  Google Scholar 

  • Cooper, J.M. & Wilhm, J., 1975. Spatial and temporal variation in productivity, species diversity, and pigment diversity of periphyton in a stream receiving domestic and oil refinery effluents. The Southwestern Naturalist 19: 413–428.

    Article  Google Scholar 

  • Dale, H.M. & Gillespie, T.J., 1977a. The influence of submersed aquatic plants on temperature gradients in shallow water bodies. Can. J. Bot. 55: 2216–2225.

    Article  Google Scholar 

  • Dale, H.M. & Gillespie, T.J., 1977b. Diurnal fluctuations of temperature near the bottom of shallow water bodies as affected by solar radiation, bottom colour and water circulation. Hydrobiologia 55: 87–92.

    Article  Google Scholar 

  • Dale, H.M. & Gillespie, T.J., 1979. Diurnal temperature gradients in shallow water produced by populations of artificial aquatic macrophytes. Can. J. Bot. 56: 1099–1106.

    Article  Google Scholar 

  • Darley, W.M., Dunn, E.L., Holmes, K.S. & Larew, H.G., 1976. A14C method for measuring epibenthic microalgal productivity in air. J. Exp. Mar. Biol. Ecol. 25: 207–217.

    Article  CAS  Google Scholar 

  • Douglas, B., 1958. The ecology of attached diatoms and other algae in a small stony stream. J. Ecol. 46: 295–322.

    Article  Google Scholar 

  • Eaton, J.W. & Moss, B., 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr. 11: 584–595.

    Article  Google Scholar 

  • Eminson, D.F., 1979. A comparison of diatom epiphytes. Their diversity and density attached to Myriophyllum spicatum L. Br. Phycol. J. 13: 57–64.

    Google Scholar 

  • Eminson, D.F. & Moss, B., 1980. The composition and ecology of periphyton communities in fresh waters. I. The influence of host type and external environment on community composition. Br. Phycol. J. 15: 429–226.

    Article  Google Scholar 

  • Gale, F.W., 1975. Ultrasonic removal of epilithic algae in a barclamp sampler. J. Phycol. 11: 472–473.

    Google Scholar 

  • Gale, F.W., Gurzynski, A.J. & Lowe, R.L., 1979. Colonization and standing crop of epilithic algae in the Susquehanna River. J. Phycol. 15: 117–123.

    Article  Google Scholar 

  • Gough, S.B. & Woelkerling, W.J., 1976. Wisconsin desmids. I: Aufwuchs and plankton communities of selected soft water lakes, hard water lakes and calcareous spring ponds. Hydrobiologia 49: 3–25.

    Article  Google Scholar 

  • Hamala, J.A., Duncan, S.W. & Blinn, D.W., 1981. A portable pump sampler for lotic periphyton. Hydrobiologia 80: 189–191.

    Article  Google Scholar 

  • Hargrave, B.T., 1969. Epibenthic algal production and community respiration in the sediments of Marion Lake. J. Fish. Res. Bd. Canada 26: 2003–2026.

    Article  Google Scholar 

  • Harlin, M.M., 1972. ‘Obligate’ algal epiphyte: Smithoranaiadum grows on a synthetic substrate. J. Phycol. 9: 230–232.

    Google Scholar 

  • Harlin, M.M., 1975. Epiphyte-host relationships in seagrass communities. Aquatic Bot. 1: 235–131.

    Article  Google Scholar 

  • Hickman, M., 1969. Methods for determining the primary productivity of epipelic and epipsammic algal associations. Limnol. Oceanogr. 14: 936–941.

    Article  Google Scholar 

  • Hickman, M., 1971. The standing crop and primary productivity of the epiphyton attached to Equisetum fluviatile L. in Priddy Pool, North Somerset. Br. Phycol. J. 6: 51–59.

    Google Scholar 

  • Hillebrand, H. & van Dijk, C.P.J., 1982. Patterns of freshwater algae on artificial substrates at different sampling scales (in press).

    Google Scholar 

  • Hoagland, K.D., Roemer, S.C. & Rosowski, J.R., 1982. Colonization and community structure of two periphytic assemblages, with emphasis on the diatoms (Bacillariophyceae). Amer. J. Bot. 69: 188–213.

    Article  Google Scholar 

  • Hooper, N.M. & Robinson, G.G.C., 1976. Primary production of epiphytic algae in a marsh pond. Can. J. Bot. 54: 2810–2815.

    Article  Google Scholar 

  • Hooper-Reid, N.M. & Robinson, G.G.C., 1978a. Seasonal dynamics of epiphytic algae growth in a marsh pond: productivity, standing crop, and community composition. Can. J. Bot. 56: 2434–2440.

    Article  CAS  Google Scholar 

  • Hooper-Reid, N.M. & Robinson, G.G.C., 1978b. Seasonal dynamics of epiphytic algae growth in a marsh pond: composition, metabolism and nutrient availability. Can. J. Bot. 56: 2441–2448.

    Article  CAS  Google Scholar 

  • Hudon, C. & Bourget, E., 1981. Initial colonization of artificial substrate: community development and structure studied by scanning electron microscopy. Can. J. Fish. Aquat. Sci. 38: 1371–1384.

    Article  Google Scholar 

  • Hunding, C., 1971. Production of epibenthic micro-algae in the littoral zone of a eutrophic lake. Oikos 22: 389–397.

    Article  Google Scholar 

  • Jones, J.G., 1974. A method for observation and enumeration of epilithic algae directly on the surface of stones. Oecologia 16: 1–8.

    Article  Google Scholar 

  • Jones, J.G., 1979. Spatial variation in epilithic algae in a stony stream, Wilfin Beck, U.K., with particular reference to Cocconeis placentula. Freshwat. Biol. 8: 539–546.

    Article  Google Scholar 

  • Jones, R.C. & Adams, M.S., 1982. Seasonal variations in photosynthetic response of algae epiphytic on Myriophyllum spicatum L. Aquatic Bot. 13: 317–330.

    Article  Google Scholar 

  • Loeb, S.L., 1981. An ‘in situ’ method for measuring the primary productivity and standing crop of the epilithic periphyton community in benthic systems. Limnol. Oceanogr. 26: 394–399.

    Article  Google Scholar 

  • Margalef, R., 1949. A new limnological method for the investigation of thin layered epilithic communities. Hydrobiologia 1: 215–216.

    Article  Google Scholar 

  • Mason, C.F. & Bryant, R.J., 1975. Periphyton production and chironomid grazing in Alderfen Broad, Norwich, England. Freshwat. Biol. 5: 271–277.

    Article  Google Scholar 

  • McRoy, C.R. & Goering, J.J., 1974. Nutrient transfer between seagrass Zostera marina and its epiphytes. Nature (London) 248: 173–174.

    Article  CAS  Google Scholar 

  • Moss, B., 1977 Adaptations of epipelic and epipsammic freshwater algae. Oecologia 28: 103–108.

    Google Scholar 

  • Moss, B., 1981. The composition and ecology of periphyton communities in freshwaters. 2: Interrelationships between water chemistry, phytoplankton populations and periphyton populations in a shallow lake and associated experimental reservoir’s Lund tubes. Br. Phycol. J. 16: 59–76.

    Article  Google Scholar 

  • Pip, E. & Robinson, G.G.C., 1982. A study of the seasonal dynamics of three phycoperiphytic communities, using nuclear track autoradiography. I. Inorganic carbon uptake. Arch. Hydrobiol. 94: 341–371.

    CAS  Google Scholar 

  • Pip, E. & Robinson, G.G.C., 1982. A study of the seasonal dynamics of three phycoperiophytic communities, using nuclear track autoradiography. II. Organic carbon uptake. Arch. Hydrobiol. 96: 47–64.

    Google Scholar 

  • Prowse, G.A., 1959. Relationship between epiphytic algae and their macrophyte roots. Nature (London) 183: 1204–1205.

    Article  Google Scholar 

  • Robinson, G.G.C. & Putt, M., 1982. Evidence for light adaptation of vertically distributed periphyton (unpublished).

    Google Scholar 

  • Rosemarin, A.S. & Gelin, C., 1978. Epilithic algal presence and pigment composition on naturally occurring and artificial substrates in Lakes Trumen and Fiolen, Sweden. Verh. Internal Verein. Limnol. 20: 808–813.

    Google Scholar 

  • Schindler, D.W., Frost, V.E. & Schmidt, R.V., 1973. Production of epilithiphyton in two lakes of the Experimental Lakes Area, Northwestern Ontario. J. Fish. Res. Bd. Canada 30: 1511–1524.

    Article  CAS  Google Scholar 

  • Shamess, J.J. & Robinson, G.G.C., 1982. The structure and comparison of periphytic and planktonic algal communities in two eutrophic prairie lakes. (Unpublished.)

    Google Scholar 

  • Sicko-Goad, L., Stoermer, E.F. & Ladewski, B.G., 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93: 147–163.

    Article  Google Scholar 

  • Stanley, D.W., 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015–1024.

    Article  Google Scholar 

  • Swanson, C.D. & Bachmann, R.W., 1976. A model of algal exports in some Iowa streams. Ecology 57: 1076–1080.

    Article  Google Scholar 

  • Tai, Y.C. & Hodgkiss, I.J., 1975. Studies on Plover Cove Reservoir, Hong Kong. Freshwat. Biol. 5: 85–103.

    Article  Google Scholar 

  • Twilley, R.R., Brinson, M.M. & Davis, G.J., 1977. Phosphorus absorbtion, translocation and secretion in Nuphar lutea. Limnol. Oceanogr. 22: 1022–1032.

    Article  CAS  Google Scholar 

  • Van Raalte, C.D., Valiela, I. & Teal, J.M., 1976. Production of epibenthic salt marsh algae: light and nutrient limitation. Limnol. Oceanogr. 21: 862–872.

    Article  Google Scholar 

  • Wetzel, R.G., 1975. Limnology. W.B. Saunders Co. Philadelphia. 743 pp.

    Google Scholar 

  • Wetzel, R.G., 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Rev. ges. Hydrobiol. 49: 1–61.

    Article  Google Scholar 

  • Woelkerling, W.J., 1976. Wisconsin Desmids. I. Aufwuchs and plankton communities of selected acid bogs, alkaline bogs, and closed bogs. Hydrobiologia 48: 209–232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert G. Wetzel

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

Robinson, G.G.C. (1983). Methodology: the key to understanding periphyton. In: Wetzel, R.G. (eds) Periphyton of Freshwater Ecosystems. Developments in Hydrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7293-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7293-3_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7295-7

  • Online ISBN: 978-94-009-7293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics