Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 82))

Abstract

Following a description of the phenomena of land subsidence, its main features and its occurrence in many parts of the world, the review starts with the simplest depth-porosity model and models that are based on field data and empirical relations. It then continues through models that are based on the theories and physical concepts. The first studies of these kind are the semi- infinite elastic solid models which assume the earth to behave like a homogeneous, isotropic half space with a uniform elasticity modulus. A more rigorous approach to model land subsidence includes transient flow and equilibrium equations for isothermal reservoirs. A solution of this set of coupled equations can be obtained either by full-coupling which could be quite lengthy or by partial coupling which can be separated into two subgroups: “leap frog” and “two step” techniques. In the “two-step” method, the aquifer flow equation is solved in a three or two-dimensional space and then it is assumed that the solid deformation is one dimensional and one-dimensional consolidation equations are solved for aquitards in the reservoir. The results of the flow equation are the time dependent boundary conditions of the consolidation equations. An alternative approach to explain the behaviour of aquitards is given by viscoelastic models which assume a Theological constitutive equation instead of an elastic one as employed by the “two-step” technique. Later, models using a plastic stress- strain relation, and models for horizontal displacements are also reviewed. Finally, geothermal reservoir models that require an additional energy equation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poland, J. F., B. E. Lofgren, and F. S. Riley. Glossary of Selected Terms Useful in Studies of the Mechanics of Aquifer Systems and Land Subsidence due to Fluid Withdrawal. U.S. Geological Survey Water-Supply Paper 2025, ( USGS, Wash., D.C., 1972 ).

    Google Scholar 

  2. Scott, R. F. Subsidence - A Review, in Evaluation and Prediction of Subsidence, edited by S. K. Saxena, American Society of Civil Engineers (1979) 1–25.

    Google Scholar 

  3. Poland, J. F. Subsidence and its Control in Underground Waste Management and Environmental Implications, edited by T. D. Cook, Memoir No. 18, American Association of Petroleum Geologist (1972) 50–71.

    Google Scholar 

  4. Chi, S. C., and R. E. Reilinger. Geodetic Evidence for Subsidence due to Groundwater Withdrawal in Many Parts of the United States of America. J. of Hydrology 67 (1984) 155–182.

    Google Scholar 

  5. Poland, J. F., and G. H. Davis. Land Subsidence due to Withdrawal of Fluids. in Reviews in Engineering Geology 2, Geological Society of America (1969) 187–269.

    Google Scholar 

  6. Corapcioglu, M. Y., and W. Brutsaert. The Influence of Man on Ground Water Storage. Proc. Third Int. Conf. on Groundwater, Palermo, Italy, Nov. 1975.

    Google Scholar 

  7. Corapcioglu, M. Y. A Plasticity Theory for Porous Materials, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 58 (1978) T205–206.

    Google Scholar 

  8. Corapcioglu, M. Y., and T. Uz. Constitutive Equations for Plastic Deformation of Porous Materials. Power Technology 21 (1978) 269–274.

    Google Scholar 

  9. Desai, C. S., H. V. Plan, and S. Sture. Procedure, Selection and Application of Plasticity Models for a Soil. Int. J. Numer. Anal. Meth. Geomech. 5 (1981) 295–311.

    MATH  Google Scholar 

  10. Corapcioglu, M. Y. Yield Criteria for Porous Materials, in Proc. Int. Conf. Constitutive Laws for Engineering Materials: Theory and Application. Tucson, Arizona, edited by C. S. Desai and R. H. Gallagher (1983) 465–474.

    Google Scholar 

  11. Schiffman, R. L. The Use of Visco-Elastic Stress-Strain Laws in Soil Testing, ASTM, STP 254, Papers on Soils, Meetings (1959) 131–155.

    Google Scholar 

  12. Zienkiewicz, 0. C., and I. C. Cormeau. Viscoplasticity - Plasticity and Creep in Elastic Solids - A Unified Numerical Solution Approach. Int. J. Num. Meth. in Eng. 8 (1974) 821–845.

    MATH  Google Scholar 

  13. Fuller, M. L. Summary of Controlling Factors of Artesian Flows. U.S. Geological Survey Bulletin 319 (1908).

    Google Scholar 

  14. Safai, N. M., and Pinder, G. F. Vertical and Horizontal Land Deformation due to Fluid Withdrawal. Int. J. Numer. Anal. Meth. Geomech. 4 (1980) 131–142.

    Google Scholar 

  15. Lippmann, M. J., T. N. Narasimhan, and P. A. Witherspoon. Numerical Simulation of Reservoir Compaction in Liquid Dominated Geothermal Systems. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 179–189.

    Google Scholar 

  16. Helm, D. C. One-dimensional Simulation of Aquifer System Compaction Near Pixley, California. 1. Constant Parameters. Water Resour. Res. 11 (1975) 465–578.

    Google Scholar 

  17. Gambolati, G., and R. A. Freeze. Mathematical Simulation of the Subsidence of Venice. 1. Theory. Water Resour. Res. 9 (1973) 721–733.

    Google Scholar 

  18. Kojic, M., and J. B. Cheatham, Jr. Theory of Plasticity of Porous Media with Fluid Flow. Soc. Pet. Eng. J. 14 (1974) 263–270.

    Google Scholar 

  19. Bear, J., and M. Y. Corapcioglu. Mathematical Model for Regional Land Subsidence due to Pumping. 2. Integrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements. Water Resour. Res. 17 (1981) 947–958.

    Google Scholar 

  20. Finnemore, E. J., and M. L. Gilham. Compaction Processes and Mathematical Models of Land Subsidence in Geothermal Areas. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 157–166.

    Google Scholar 

  21. Saxena, S. K. A Review of the Methods Used in Investigation of Subsidence, in Evaluation and Prediction of Subsidence, edited by S. K. Saxena, American Society of Civil Engineers (1979) 214–233.

    Google Scholar 

  22. Corapcioglu, M. Y., and N. Karahanoglu. Simulation of Geo- thermal Production, in Alternative Energy Sources II, edited by T. N. Veziroglu, Hemisphere Publ. Co., N.Y. 5 (1980) 1895–1918.

    Google Scholar 

  23. Pinder, G. F. State-of-the-Art Review of Geothermal Reservoir Modelling. Geothermal Subsidence Research Management Program; Lawrence Berkeley Lab., Univ. of Calif. Rep. No. GSRMP-5. 1979.

    Google Scholar 

  24. Sandhu, R. S. Modelling Land Subsidence. in Evaluation and Prediction of Subsidence, edited by S. K. Saxena, American Society of Civil Engineers (1979) 565–579.

    Google Scholar 

  25. Helm, D. C. Conceptual Aspects of Subsidence due to Fluid Withdrawal. in Recent Trends in Hydrogeology, edited by T. N. Narasimhan, Special Paper No. 189 Geological Society of American (1982) 103–139.

    Google Scholar 

  26. Helm, D. C. Predictive Techniques for Land Subsidence Caused by Water-level Declines in Unconsolidated Aquifers (abstract). GAAPBC, Geological Society of America 12 (1980) 445.

    Google Scholar 

  27. Schatz, J. F., P. W. Kasameyer, and J. A. Cheney. A Method of Using In Situ Porosity Measurements to Place an Upper Bound on Geothermal Reservoir Compaction, in Second Invitational Well Testing Symp Proc., Lawrence Berkeley Laboratory, Berkeley (1978) 90–94.

    Google Scholar 

  28. Terzaghi, K. Erdbaumechanik auf bodenphysikalischer Groundlage, Franz Deuticke, Vienna, 1925.

    Google Scholar 

  29. Gibbs, H. J. A Laboratory Testing Study of Land Subsidence. Proc. The First Pan Ame. Conf. Soil Mech. and Found. Eng., Mexico City 1 (1950) 13–39.

    Google Scholar 

  30. Miller, R. E. Compaction of an Artesian Aquifer System Computed from Consolidation Tests and Decline in Artesian Field. U.S. Geol. Survey Prof. Paper 424-B, Art. 26 (1961) B54–B58.

    Google Scholar 

  31. Green, J. H. Compaction of the Aquifer System and Land Subsidence in the Santa Clara Valley, California. U.S. Geol. Survey Prof. Paper 450-D, Art. 172 (1962) D175–D178.

    Google Scholar 

  32. Lofgren, B. E., and R. L. Klausing. Land Subsidence due to Groundwater Withdrawal, Tulare-Wasco Area, California. U.S. Geol. Survey Prof. Paper 437–B, 1969.

    Google Scholar 

  33. Bouwer, H. Land Subsidence and Cracking Due to Ground-Water Depletion, Groundwater 15 (1977) 358–364.

    Google Scholar 

  34. Lohman, S. W. Compression of Elastic Artesian Aquifers. U.S. Geol. Survey Prof. Paper 424–B, Art. 23 (1961) B47–B49.

    Google Scholar 

  35. Poland, J. F. The Coefficient of Storage in a Region of Major Subsidence Caused by Compaction of an Aquifer System. U.S. Geol. Survey Prof. Paper 424–B, Art. 25 (1961) B52–B53.

    Google Scholar 

  36. Lohman, S. W. Ground-Water Hydraulics. U.S. Geol. Survey Prof. Paper 708, 1972.

    Google Scholar 

  37. Riley, F. S. Analysis of Borehole Extensometer Data from Central California. Proc. First Int. Symp. on Land Subsidence. Tokyo, Japan. Int. Assoc. of Hydrological Sciences Pub. No. 89 (1970) 423–431.

    Google Scholar 

  38. Poland, J. F., B. E. Lofgren, R. L. Ireland, and R. G. Pugh. Land Subsidence in the San Joaquin Valley, California as of 1972. U.S. Geol. Survey Prof. Paper 437-H, 1975.

    Google Scholar 

  39. Gabrysch, R. K., and C. W. Bonnet. Land-surface Subsidence at Seabrook, Texas. U.S. Geol. Survey. Open File Report. 75–413, 1975.

    Google Scholar 

  40. Holzer, T. L. Preconsolidation Stress of Aquifer Systems in Areas of Induced Land Subsidence. Water Resour. Res. 17 (1981) 693–704.

    Google Scholar 

  41. Carrillo, N. Subsidence in the Long Beach-San Pedro Area. Stanford Research Institute, Stanford (1949) 65-77, 225–243.

    Google Scholar 

  42. Fung, Y. C. Foundations of Solid Mechanics. Englewood Cliffs, Prentice Hall, 1965.

    Google Scholar 

  43. McCann, G. D., and C. H. Wilts. A Mathematical Analysis of the Subsidence in the Long Beach-San Pedro Area. California Institute of Technology, Pasadena, Internal. Report. 1951.

    Google Scholar 

  44. Geertsma, J. Problems of Rock Mechanics in Petroleum Production Engineering, in Proc. First Cong. Int. Soc. Rock Mech. Lisbon 1 (1966) 585–594.

    Google Scholar 

  45. Geertsma, J. Land Subsidence Above Compacting Oil and Gas Reservoirs. J. Pet. Tech. 25 (1973) 734–744.

    Google Scholar 

  46. Gambolati. G. A Three-dimensional Model to Compute Land Subsidence. Bull. Int. Assoc. Hydrological Sciences. 17 (1972) 219–226.

    Google Scholar 

  47. Mindlin, R. D., and D. H. Cheng. Thermoelastic Stress in the Semi Infinite Solid. J. Appi. Phys. 21 (1950) 931–933.

    MathSciNet  MATH  Google Scholar 

  48. Sen, B. Note on the Stress Produced by Nuclei of Thermo¬elastic Strain in a Semi-infinite Elastic Solid. Quart. Appi. Math. 8 (1950) 365–368.

    Google Scholar 

  49. Finol, A., and Farauq Ali, S. M. Numerical Simulation of Oil Production with Simultaneous Ground Subsidence. S.c. Pet. Eng. J. 15 (1975) 411–422.

    Google Scholar 

  50. Gambolati, G. Second-order Theory of Flow in Three- Dimensional Deforming Media. Water Resour. Res. 10 (1974) 1217–1227.

    Google Scholar 

  51. Gambolati, G. Deviations from the Theis Solution in Aquifers Undergoing Three-dimensional Consolidation. Water Resour. Res. 13 (1977) 62–68.

    Google Scholar 

  52. Corapcioglu, M. Y., and W. Brutsaert. Viscoelastic Aquifer Model Applied to Subsidence Due to Pumping. Water Resour. Res. 13 (1977) 597–604.

    Google Scholar 

  53. Domenico, P. A., and M. D. Mifflin. Water From Low Permea-bility Sediments and Land Subsidence. Water Resour. Res. 1 (1965) 563–576.

    Google Scholar 

  54. Gambolati, G., P. Gatto, and R. A. Freeze. Mathematical Simulation of the Subsidence of Venice. 2. Results. Water Resour. Res. 10 (1974) 563–577.

    Google Scholar 

  55. Carbognin, L., P. Gatto, G. Mozzi, G. Gambolati, and G. Ricceri. New Trend in the Subsidence of Venice. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 65–81.

    Google Scholar 

  56. Lewis, R. W., and B. Schrefler. A Fully Coupled Consolidation Model of the Subsidence of Venice. Water Resour. Res. 14 (1978) 223–230.

    Google Scholar 

  57. Lewis, R. W., G. K. Roberts, and 0. C. Zienkiewicz. A Non¬linear Flow and Deformation Analysis of Consolidated Problems. in Proc. Second Int. Conf. Num. Meth. Geomech. Blacksburg, Virginia, edited by C. S. Desai. American Society of Civil Engineers (1976) 1106–1118.

    Google Scholar 

  58. Duncan, J. M., and C. Y. Chang. Nonlinear Analysis of Stress and Strain in Soils. J. Soil Mech. and Found. Div. American Society of Civil Engineers. 96 (1970) 1629–1653.

    Google Scholar 

  59. Lewis, R. W., and P. M. Roberts. The Finite Element Method in Porous Media Flow, in Fundamentals of Transport Phenomena in Porous Media, edited by J. Bear and M. Y. Corapcioglu, Martinus Nijhoff Pubi. B. V. (1984).

    Google Scholar 

  60. Schrefler, B. A., R. W. Lewis, and V. A. Norris. A Case Study of the Surface Subsidence of the Polesine Area. Int. J. Num. Anal. Meth. Geomech. 1 (1977) 377–386.

    Google Scholar 

  61. Schrefler, B. A., R. W. Lewis, and C. Majorana. Subsidence above Volumetric and Waterdrive Gas Reservoirs, Int. J. Num. Meth. in Fluids 1 (1981) 101–115.

    Google Scholar 

  62. Morgan, K., R. W. Lewis, and I. R. White. The Mechanisms of Ground Surface Subsidence Above Compacting Multiphase Reservoirs and Their Analysis by the Finite Element Method. App. Math. Modelling 4 (1980) 217–224.

    MATH  Google Scholar 

  63. Sparks, A. D. W. Numerical Methods for the Settlement of Venice and Layered Soil Deposits, in Proc. Third Int. Conf. Num. Meth. in Geometh. Aachen, West Germany. Edited by W. Wittke, Belkema, 1 (1979) 213–225.

    Google Scholar 

  64. Helm, D. C. One-dimensional Simulation of Aquifer System Compaction Near Pixley, California. 2. Stress-Dependent Parameters. Water Resour. Res. 12 (1976) 375–391.

    Google Scholar 

  65. Helm, D. C. Estimating Parameters of Compacting Fine-Grained Interbeds Within a Confined Aquifer System by a One- dimensional Simulation of Field Observations. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 145–156.

    Google Scholar 

  66. Narasimhan, T. N., and P. A. Witherspoon. Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. 1. Theory. Water Resour. Res. 13 (1977) 657–664.

    Google Scholar 

  67. Narasimhan, T. N., and B. Y. Kanehiro. A Note on the Meaning of Storage Coefficient. Water Resour. Res. 16 (1980) 423–429.

    Google Scholar 

  68. Bishop, A. W., and G. E. Blight. Some Aspects of Effective Stress in Saturated and Partly Saturated Soils. Geotechnique 13 (1963) 177–197.

    Google Scholar 

  69. Bishop, A. W. The Principle of Effective Stress. Norwegian Geotech. Inst. Publ. No. 32, Oslo (1960) 1–5.

    Google Scholar 

  70. McMurdie, J. L., and P. R. Day. Slow Tests Under Soil Moisture Section. Soil Sci. Soc. Ame. Proc. 24 (1960) 441–444.

    Google Scholar 

  71. Fredlund, D. G., and N. R. Morgenstern. Stress State Variables for Unsaturated Soils. J. Geotech. Eng. Div., American Society of Civil Engineers 103 (1977) 447–466.

    Google Scholar 

  72. Sparks, A. D. W. Theoretical Considerations of Stress Equations for Partly Saturated Soils. Third Regional Conf. for Africa on Soil Mec. and Found. Eng., Salisbury, Rhodesia (1963) 215–218.

    Google Scholar 

  73. Morland, L. W. Effective Stress in Mixture Theory. Arch. Mech. 27 (1975) 883–887.

    MATH  Google Scholar 

  74. Bear, J., and M. Y. Corapcioglu. Centrifugal Filtration in Deformable Porous Media, in Water Flow in Deformable Porous Media. Univ. of Michigan, Dept. of Civil Eng. Report (1981) 1–42.

    Google Scholar 

  75. Narasimhan, T. N., P. A. Witherspoon, and A. L. Edwards. Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. 2. The Algorithm. Water Resour. Res. 14 (1978) 255–261.

    Google Scholar 

  76. Narasimhan, T. N., and P. A. Witherspoon. Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. 3. Applications. Water Resour. Res. 14 (1978) 1017–1034.

    Google Scholar 

  77. Narasimhan, T. N., and P. A. Withersppon. Numerical Model for Land Subsidence in Shallow Groundwater Systems. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 133–143.

    Google Scholar 

  78. Kashef, A-A. I., and K-R. Chang. Determination of Soil Subsidence due to Well Pumping by Numerical Analysis. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 167–178.

    Google Scholar 

  79. Safai, N. M., and G. F. Pinder. Vertical and Horizontal Land Deformation in a Desaturating Porous Medium. Adv. Water Resour. 2 (1979) 19–25.

    Google Scholar 

  80. Van Genuchten, M., G. P. Pinder, and W. P. Saukin. Modelling of Leachate and Soil Interactions in an Aquifer. Proc. Third Municipal Solid Waste Res. Symp. EPA-600/9–77–026 (1977) 95–103.

    Google Scholar 

  81. Corapcioglu, M. Y. Mathematical Modelling of Leaky Aquifers with Rheological Properties. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 191–200.

    Google Scholar 

  82. Brutsaert, W., and M. Y. Corapcioglu. Pumping of Aquifer with Visco-elastic Properties. J. Hyd. Div., American Society of Civil Engineers. 102 (1976) 1663–1675.

    Google Scholar 

  83. Zeevaert, L. Consolidation of Mexico City Clay. Special Tech. Pub. American Society for Testing Materials. No. 232 (1957) 18–32.

    Google Scholar 

  84. Tan, T. K. Structure Mechanics of Clays. Scientia Sinica. 8 (1959) 83–97.

    Google Scholar 

  85. Tan, T. K. Three-dimensional Theory on the Consolidation and Flow of the Clay Layers. Scientia Sinica. 6 (1957) 203–215.

    Google Scholar 

  86. Taylor, D. W., and W. Merchant. A Theory of Clay Consoli¬dation Accounting for Secondary Compression. J. Math. Phys. 19 (1940) 167–185.

    Google Scholar 

  87. Christie, I. A. A Re-appraisal of Merchant!s Contribution to the Theory of Consolidation. Geotechnique. 14 (1964) 309–320.

    Google Scholar 

  88. Murayama, S., and T. Shibata. Flow and Stress Relaxation of Clays. Int. Symp. on Rheology and Soil Mech. Grenoble, France. Springer Verlag, New York (1966) 99–129.

    Google Scholar 

  89. Schiffman, R. L., C. C. Ladd, and A. T. F. Chen. The Secondary Consolidation of Clay. Int. Symp. on Rheology and Soil Mech. Grenoble, France. Springer Verlag, New York (1966) 273–304.

    Google Scholar 

  90. Suklje, L. Rheological Aspects of Soil Mechanics, Wiley- Interscience. London, England. 1969.

    Google Scholar 

  91. Komamura, F., and R. J. Huang. New Rheological Model for Soil Behaviour. J. Geotech. Eng. Div., American Society of Civil Engineers 100 (1974) 807–824.

    Google Scholar 

  92. Asiz, K. A., and J. T. Laba. Rheological Model of Laterally Stressed Frozen Soil. J. Geotech. Eng. Div. American Society of Civil Engineers 102 (1978) 825–839.

    Google Scholar 

  93. Gibson, R. E., and K. Y. Lo. A Theory of Consolidation for Soils Exhibiting Secondary Compression. Norwegian Geo- technical Inst. Pub. No. 41 (1961).

    Google Scholar 

  94. Barden, L. Primary and Secondary Consolidation of Clay and Peat. Geotechnique 18 (1968) 1–24.

    Google Scholar 

  95. Davis, R. 0. Numerical Approximation of One-dimensional Consolidation. Int. J. Num. Meth. Eng. 4 (1972) 279–287.

    Google Scholar 

  96. Tan, T. K. Secondary Time Effects and Consolidation of Clays. Scientia Sinica 7 (1958) 1060–1075,

    Google Scholar 

  97. Hantush, M. S., and C. E. Jacob. Steady Three-dimensional Flow to a Wall in a Two-Layered Aquifer. Trans. Ame. Geo- phys. Union 36 (1955) 286–292.

    Google Scholar 

  98. Schapery, R. A. Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis. Fourth U.S. Nat. Cong, of App. Mech., ASME 2 (1962) 1075–1085.

    MathSciNet  Google Scholar 

  99. Brutsaert, W., and M. Y. Corapcioglu. Conparison of Solutions for Delayed-Yield Aquifers. J. Hyd. Div. American Society of Civil Engineers 104 (1978) 1188–1191.

    Google Scholar 

  100. Zienkiewicz, 0. C., and D. J. Naylor. Finite Element Studies of Soils and Porous Media, in Lectures on Finite Element Methods in Continuum Mechanics, edited by Oden and Oliveire, Univ. of Alabama, Huntsville (1973) 459–493.

    Google Scholar 

  101. Roscoe, K. H., and J. B. Borland. On the Generalized Stress Strain Behaviour of Wet Clay. Sym. on Eng. Plasticity, Cambridge Univ. Press (1968) 535–609.

    Google Scholar 

  102. Roscoe, K. H., A. N. Schofield, and A. Thurairajah. Yield¬ing of Clays in States Wetter than Critical. Geotechnique 13 (1963) 211–240.

    Google Scholar 

  103. Zienkiewicz, 0. C., C. Humpheron, and R. W. Lewis. A Unified Approach to Soil Mechanics Problems (Including Plasticity and Visco-plasticity). in Finite Elements in Geomethanics, edited by G. Gudehus, Wiley-Interscience, London (1977) 151–177.

    Google Scholar 

  104. Desai, C. S., and T. H. J. Siriwardane. Subsidence due to Consolidation Including Non-linear Behaviour, in Evaluation and Prediction of Subsidence, edited by S. K. Saxena, American Society of Civil Engineers (1979) 500–515.

    Google Scholar 

  105. Runesson, K., H. Tagnfors, and N-E. Wiberg. Finite Element Analysis of Groundwater Flow and Settlements in Aquifers Confined by Clay, in Finite Elements in Water Resources, edited by C. A. Brebbia, W. C. Gray and G. F. Pinder. Pentech Press, London (1978) 1. 249–1. 268.

    Google Scholar 

  106. Barends, F. B. J. Land Subsidence due to a Well in an Elastic Saturated Subsoil, in Proc. Euromech 143 Flow and Transport in Porous Media, edited by A. Verruijt and F. B. J. Barends, Balkema (1981) 11–18.

    Google Scholar 

  107. Helm, D. C. Field Verification of a One-Dimensional Mathematical Model for Transient Compaction and Expansion of a Confined Aquifer System, in Proc. Spe. Conf. on Verification of Math, and Phys. Models in Hyd. Eng. College Park, Maryland, American Society of Civil Engineers (1978) 189–196.

    Google Scholar 

  108. Castle, R. 0., and R. F. Yerkes. Recent Surface Movements in the Baldwin Hills, Los Angeles County, Calif. U.S. Geol. Survey Prof. Paper 882, 1976.

    Google Scholar 

  109. Verruijt, A. Horizontal Displacements in Pumped Aquifers (abstract) EOS Trans. Ame. Geophys. Union 51 (1970) 204.

    Google Scholar 

  110. Lee, K. L., and C. K. Shen. Horizontal Movements Related to Subsidence. J. Soil Mech. Found. Div. American Society of Civil Engineers 95 (1969) 139–166.

    Google Scholar 

  111. Lee, K. L. Calculated Horizontal Movements at Baldwin Hills, California. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 299–308.

    Google Scholar 

  112. Lee, K. C. Subsidence Earthquake at a California Oil Field, in Evaluation and Prediction of Subsidence, edited by S. K. Saxena, American Society of Civil Engineers (1979) 549–564.

    Google Scholar 

  113. Helm, D. C. Radial Movement of a Confined Aquifer Towards a Pumping Well (abstract) GAAPBC, Geological Society of America 10 (1978) 109.

    Google Scholar 

  114. Davis, S. N., F. L. Peterson, and A. D. Halderman,. Measure-ment of Small Surface Displacements Induced by Fluid Flow. Water Resour. Res. 5 (1969) 129–138.

    Google Scholar 

  115. Wolf, R. G. Relationship Between Horizontal Strain Near a Well and Reverse Water Level Fluctuation. Water Resour. Res. 6 (1970) 1721–1728.

    Google Scholar 

  116. Brown, C. B., and S. J. Burges. Steady State Ground Motions Caused by Single-Well Pumping. Water Resour. Res. 9 (1973) 1420–1427.

    Google Scholar 

  117. Mercer, J. W., and C. R. Faust. A Review of Numerical Simulation of Hydrothermal Systems. Hyd. Sci. Bull. 24 (1979) 335–343.

    Google Scholar 

  118. Faust, C. R., and J. W. Mercer. Geothermal Reservoir Simulation: 1. Mathematical Models for Liquid- and Vapor- Dominated Hydrothermal Systems. Water Resour. Res. 15 (1979) 23–30.

    Google Scholar 

  119. Sorey, M. L. Numerical Modeling of Liquid Geothermal Systems. U.S. Geol. Survey Prof. Paper 1044-D, 1978.

    Google Scholar 

  120. Lippmann, M. J., T. N. Narasimhan, and P. A. Witherspoon. Numerical Simulation of Reservoir Compaction in Liquid Dominated Geothermal Systems. Proc. Second Int. Symp. on Land Subsidence. Anaheim, Calif. Int. Assoc. of Hydrological Sciences Pub. No. 121 (1977) 179–189.

    Google Scholar 

  121. Brownell, D. H., S. K. Garg, and P. W. Prichett. Governing Equations for Geothermal Reservoirs. Water Resour. Res. 13 (1977) 929–934.

    Google Scholar 

  122. Garg, S. K., and J. W. Pritchett. Ori Pressure-Work, Viscous Dissipation and the Energy Balance Relation for Geothermal Reservoirs. Adv. Water Resour. 1 (1977) 41–47.

    Google Scholar 

  123. Pritchett, J. W., S. K. Garg, D. H. Brownell, L. F. Rice, M. H. Rice, T. D. Riney, and R. R. Hendrickson. Geohydrologi- cal Environmental Effects of Geothermal Power Production, Phase IIa, Systems, Science and Software. La Jolla, Calif. Rep. SSS-R-77–2998 (1976).

    Google Scholar 

  124. Garg, S. K., J. W. Pritchett, W. H. Rice, and T. D. Riney. U. S. Gulf Coast Geopressured Geothermal Reservoir Simulation, Final Report, Systems, Science and Software. La Jolla, Calif. Rep. SSS-R-77–3147 (1977).

    Google Scholar 

  125. Garg, S. K., J. W. Pritchett, D. H. Brownell, Jr., T. D. Riney. Geopressured Geothermal Reservoir and Wellbore Simulation. Final Report, Systems, Science, and Software. La. Jolla, Calif. Rep. SSS-R-78–3639 (1978).

    Google Scholar 

  126. Pritchett, J. W., L. F. Rice, and S. K. Garg. Reservoir Simulation Studies: Wairakei Geothermal Field, New Zealand. Final Report, Systems, Science, and Software. La Jolla, Calif. Rep. SSS-R-80–4313 (1980).

    Google Scholar 

  127. Narasimhan, T. N., and K. P. Goyal. A Preliminary Simulation of Land Subsidence at the Wairakei Geothermal Field in New Zealand. Fifth Workshop Geother. Res. Eng. Stanford Univ. (1979).

    Google Scholar 

  128. Aktan, T., and S. M. Farouq Ali. Finite Element Analysis of Temperature and Thermal Stresses Induced by Hot Water Injection. Soc. Pet. Eng. J. 18 (1978) 457–469

    Google Scholar 

  129. Ertekin, T., and S. M. Farouq Ali. Numerical Simulation of the Compaction-Subsidence Phenomena in a Reservoir for Two- Phase Nonisothermal Flow Conditions. in Proc. Third Int. Conf. on Num. Meths. in Geomech. Aachen, West Germany, edited by W. Wittke, Balkema 1 (1979) 263–274.

    Google Scholar 

  130. Narasimhan, T. N. Subsidence due to Geothermal Flow Production. GAAPBC, Geological Society of America 12 (1980) 490.

    Google Scholar 

  131. Schatz, J. F., S. Carlisle, and K. Wolgemuth. Creep Compaction of Geothermal Reservoir Rock, in Proc. 21st U.S. Symp. Rock Mech. Univ. of Missouri, Rolla (1980).

    Google Scholar 

  132. Lewis, R. W., and N. Karahanoglu. Simulation of Subsidence in Geothermal Reservoirs, in Proc. of Second Int. Conf. Num. Meth. in Thermal Prob, edited by R. W. Lewis, K. Morgan, and B. A. Schrefler 2 (1981) 326–335.

    Google Scholar 

  133. Bear, J., and M. Y. Corapcioglu. A Mathematical Model for Consolidation in a Thermoelastic Aquifer Due to Hot Water Injection or Pumping. Water Resour. Res. 17 (1981) 723–736.

    Google Scholar 

  134. Corapcioglu, M. Y. Thermo-elasto-plastic Deformation of Porous Materials. J. Thermal Stresses 6 (1983) 99–113.

    Google Scholar 

  135. Bear, J., and G. Pinder. Porous Medium Deformation in Multiphase Flow. J. Eng. Mech. Div., American Society of Civil Engineers 104 (1978) 881–894.

    Google Scholar 

  136. Biot, M. A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12 (1941) 155–164.

    MATH  Google Scholar 

  137. Verruijt, A. Elastic Storage of Aquifers in Flow Through Porous Media, edited by R. J. M. DeWiest. Academic, New York (1969) 331–376.

    Google Scholar 

  138. Jacob, C. E. The Flow of Water in an Elastic Artesian Aquifer. EOS Trans. American Geophys. Union 21 (1940) 574–586.

    Google Scholar 

  139. Ghaboussi, J., and E. L. Wilson. Flow of Compressible Fluid in Porous Elastic Media. Int. J. Numer. Meth. Eng. 5 (19 73 ) 419–442.

    MATH  Google Scholar 

  140. Bear, J. Dynamics of Fluids in Porous Media. American Elsevier. New York (1972).

    MATH  Google Scholar 

  141. Hubbert, M. K. The Theory of Groundwater Motion. J. Geol. 48 (1940) 785–944.

    Google Scholar 

  142. Cooper, H. H. The Equation of Groundwater Flow in Fixed and Deforming Coordinates. J. Geophys. Res. 71 (1966) 4785–4790.

    Google Scholar 

  143. DeWiest, R. J. M. On the Storage Coefficient and the Equations of Groundwater Flow. J. Geophys. Res. 71 (1966) 1117–1122.

    Google Scholar 

  144. Gambolati, G. Equation for One-dimensional Vertical Flow of Groundwater. 1. Rigorous Theory. Water Resour. Res. 9 (1973) 1022–1028.

    Google Scholar 

  145. Cooper, H. H. Comments on “Equation for One-dimensional Vertical Flow of Groundwater” by G..Gambolati. Water Resour. Res. 10 (1974) 1260–1261.

    Google Scholar 

  146. Gambolati, G. Reply. Water Resour. Res. 10 (1974) 1262.

    Google Scholar 

  147. Rendulic, L. Porenziffer und Porenwasserdruck in Tonen. Der Bauingenieur 17 (1936) 559 - 564.

    Google Scholar 

  148. Heinrich, G., and K. Desoyer. Theorie of Driedimensionaler Setzungsvorgaenge in Tonschichten. Ing.-Arch. 30 (1961) 225.

    MathSciNet  MATH  Google Scholar 

  149. Cryer, C. W. A Comparison of the Three-dimensional Consoli-dation Theories of Biot and Terzaghi. Quart. J. Mech. Appl. Math. 16 (1963) 401–412.

    MATH  Google Scholar 

  150. McNabb, A. A Mathematical Treatment of One-dimensional Soil Consolidation. Quart. Appl. Math. 17 (1960) 337–347.

    Google Scholar 

  151. Brutsaert, W. Elastic Consolidation and Flow of Two Immiscible Fluids in a Porous Medium. Unpublished Manuscript.

    Google Scholar 

  152. Berry, P. L., and T. J. Poskitt. The Consolidation of Peat. Geotechnique 22 (1972) 27–52.

    Google Scholar 

  153. Wu, T. H., D. Resendiz, and R. J. Neukirchner. Analysis of Clay Deformation as a Rate Process. J. Soil Mech. Found. Div. American Society of Civil Engineers 92 (1966) 229–248.

    Google Scholar 

  154. Terzaghi, K. Theoretical Soil Mechanics. John Wiley, New York (1943) 290.

    Google Scholar 

  155. Bear, J., and M. Y. Corapcioglu. Mathematical Model for Regional Land Subsidence Due to Pumping. 1. Integrated Aquifer Subsidence Equations Based on Vertical Displacement Only. Water Resour. Res. 17 (1981) 937–946.

    Google Scholar 

  156. Bear, J., and M. Y. Corapcioglu. Averaged Regional Land Subsidence Equations for Artesian Aquifers, in Groundwater Hydraulics, edited by J. S. Rosenshein and G. D. Bennett. American Geophys. Union Water Resources Monograph Series. 1983.

    Google Scholar 

  157. Bear, J. On the Aquifer’s Integrated Balance Equations. Adv. Water Resour. 1 (1977) 15–23.

    Google Scholar 

  158. Bear, J. Hydraulics of Groundwater. McGraw Hill, New York, 1979.

    Google Scholar 

  159. Bear, J. On the Aquifer’s Integrated Balance Equation, Technical Comment. Adv. Water Resour. 3 (1980) 141–142.

    Google Scholar 

  160. Derski, W., and S. J. Kowalski. Equations of Linear Thermo-Consolidation. Arch. Mech. 31 (1979) 303–316.

    MATH  Google Scholar 

  161. Pecker, C., and H. Deresiewicz. Thermal Effects on Wave Propagation in Liquid-Filled Porous Media. Acta Mechanica 16 (1973) 45–64.

    Google Scholar 

  162. Schiffman, R. L. A Thermoelastic Theory of Consolidation, in Environmental and Geophysical Heat Transfer, American Society of Mechanical Engineers (1971) 78–84.

    Google Scholar 

  163. Zeevaert, C. Foundation Engineering for Difficult Subsoil Conditions. Van Nostrand. New York (1977) 245–281.

    Google Scholar 

  164. Tolman, C. F., and J. F. Poland. Groundwater, Salt-water Infiltration, and Ground Surface Recession in Santa Clara Valley, Santa Clara County, California. American Geo¬physical Union Transactions 1 (1940) 23–34.

    Google Scholar 

  165. Witherspoon, P. A., and R. A. Freeze. The Role of Aquitards in Multiple Aquifer Systems, Penrose Conf. of the Geological Society of America. Geotimes 17 (1971) 22–24.

    Google Scholar 

  166. Jachens, R. C., and T. L. Holzer. Differential Compaction Mechanism for Earth Fissures near Casa Grande, Arizona. Geological Society of America Bulletin 93 (1982) 998–1012.

    Google Scholar 

  167. Helm, D. C. Field-based Computational Techniques for Predicting Subsidence due to Fluid Withdrawal, in Man- Induced Subsidence, edited by T. L. Holzer to be published by the Geological Society of America.

    Google Scholar 

  168. Madhav, M. R., and P. Basak. Ground Subsidence due to Nonlinear Flow Through Deformable Porous Media. J. Hydrology 34 (1977) 21–33.

    Google Scholar 

  169. Helm, D. C. Transient Drawdown Patterns within a Confined Aquifer System Viewed in Terms of Anisotropic and Non- homogeneous Sketetal Deformation, in Groundwater Hydraulics, edited by J. S. Rosenshein and G. D. Bennett. American Geophysical Union Water Resources Monograph Series. 1983.

    Google Scholar 

  170. Poland, J. F. Subsidence in United States due to Groundwater Withdrawal. J. Irr. and Drain. Div. American Society of Civil Engineers 107 (1981) 115–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Corapcioglu, M.Y. (1984). Land Subsidence — A. A State-of-the-Art Review. In: Bear, J., Corapcioglu, M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6175-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6175-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6177-7

  • Online ISBN: 978-94-009-6175-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics