Skip to main content

Animal Models for Dicarboxylic Aciduria

  • Chapter
Organic Acidurias

Abstract

Four compounds, 2[5(4-chlorophenyl)pentyl] oxirane-2-carboxylate (POCA), pent-4-enoate, hypoglycin and valproate, which are hypoglycaemic in fasted animals and form unusual acyl-CoA esters in vivo, inhibit mitochondrial ß-oxidation by different mechanisms. POCA., hypoglycin and valproate are known to cause dicarboxylic aciduria. Saturated dicarboxylic acids are thought to be derived from long chain fatty acids by peroxisomal ß-oxidation when mitochondrial ß-oxidation is severely impaired. The use of these inhibitors provides animal models of dicarboxylic aciduria found in some inborn errors of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billington, D., Osmundsen, H. and Sherratt, H. S. A. Mechanism of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vitro studies. Biochem. Pharmacol. 27 (1978) 2879–2890.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, N. and Kølvraa, S. The occurrence of C6-C10-dicarboxylic acids, ethylmalonic acid, 5-hydroxycaproic acid, butyrylglycine, isovalerylglycine, isobutyrylglycine, 2-methylbutyrylglycine and glutaric acid in the urine of riboflavin deficient rats. J. Inher. Metab. Dis. 5, Suppl. 1 (1982) 17–18.

    Article  CAS  Google Scholar 

  • Hoppel, C., DiMarco, J. P. and Tandler, B. Riboflavin and rat hepatic cell structure and function. Mitochondrial oxidative metabolism in deficiency states. J. Biol. Chem. 254 (1979) 4164–4170.

    PubMed  CAS  Google Scholar 

  • Karpati, G., Carpenter, S., Engel, A. W., Watters, G., Allen, J., Rothman, S., Klassen, G. and Mamer, O. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiological features. Neurology 25 (1975) 16–24.

    PubMed  CAS  Google Scholar 

  • Kunau, W.-H. and Dommes, P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-decenoyl-CoA by extracts of beef-liver mitochondria. Eur. J. Biochem. 91 (1978) 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Kunau, W.-H. and Lauterbach, F. Inhibition of linoleic acid degradation by hypoglycin A. FEBS Lett. 94 (1978) 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Lazarow, P. and de Duve, C. A fatty acyl-CoA oxidising system in rat liver peroxisomes; enhancement by clofibrate. Proc. Natl. Acad. Sci. USA 73 (1976) 2043–2046.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, P. B., Gregersen, N., Kølvraa, S. and Christensen, E. The occurrence of C6-C10-dicarboxylic acids in urine from patients and rats treated with dipropylace tate. Biochem. Med. 24 (1980) 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, P. B., Kølvraa, S., Gregersen, N. and Rasmussen, K. Cyanide-insensitive and clofibrate enhanced ß-oxidation of dodecanedioic acid in rat liver. An indication of peroxisomal ß-oxidation of N-dicarboxylic acids. Biochim. Biophys. Acta 713 (1982) 393–397.

    PubMed  CAS  Google Scholar 

  • Osmundsen, H., Cervenka, J. and Bremer, J. A role for 2,4-enoyl-CoA reductase in mitochondrial ß-oxidation of polyunsaturated fatty acids. Biochem. J. 208 (1982) 749–757.

    PubMed  CAS  Google Scholar 

  • Pettersen, J. E. In vitro studies on the metabolism of hexadecandioic acids and its mono-L-earnitine ester. Biochim. Biophys. Acta 306 (1973) 1–14.

    PubMed  CAS  Google Scholar 

  • Pettersen, J. E. and Ass, M. ATP-dependent activation of dicarboxylic acids in rat liver. Biochim. Biophys. Acta 326 (1973) 305–313.

    PubMed  CAS  Google Scholar 

  • Przyrembel, H., Wendel, U., Becker, K., Bremer, H. J., Bruinvis, L., Ketting, D. and Wadman, S. K. Glutaric aciduria Type II: Report on a previously undescribed metabolic disorder. Clin. Chem. Acta 66 (1976) 227–239.

    Article  CAS  Google Scholar 

  • Sakurai, T., Miazawa, S., Furuta, S. and Hashimoto, T. Riboflavin deficiency and ß-oxidation systems in rat liver. Lipids 17 (1982) 598–604.

    Article  PubMed  CAS  Google Scholar 

  • Sherratt, H. S. A. The inhibition of gluconeogenesis by nonhormonal hypoglycaemic compounds. In Hue, L. and van de Werve, G. (eds.) Short-term Regulation of Liver Metabolism, Elsevier, Amsterdam, 1981, pp. 199–227.

    Google Scholar 

  • Sherratt, H. S. A. and Osmundsen, H. On the mechanism of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoate. A way out of the present confusion. Biochem. Pharmacol. 25 (1976) 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Sherratt, H. S. A., Bartlett, K. and Turnbull, D. M. Four compounds that inhibit ß-oxidation: 2[5(4-chlorophenyl)-pentyl]ozirane-2-carboxylate (POCA), hypoglycin, pent-4-enoate and valproate. A comparison of their mechanisms of action. In Kabara, J. (ed.) The Pharmacological Role of Lipids, a Monograph of the American Oil Association, 1984 (In press).

    Google Scholar 

  • Tanaka, K. On the mode of action of hypoglycin A. III. Isolation and identification of cis-4-decene-l,10-dioic, cis, cis-4,7-decadiene-1-10-dioic, cis-4-octene-1, 8-dioic, glutaric and adipic, N(methylenecyclopropyl)acetylclycine, and N-isovalerylglycine, and N-isovalerylglycine from urine of hypoglycin A treated rats. J. Biol. Chem. 247 (1972) 7465–7478.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Kean, E. A. and Johnson, B. Jamaican vomiting sickness. Biochemical investigations of two cases. N. Engl. J. Med. 295 (1976) 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, D. M., Bone, A. J., Bartlett, K., Koundakjian, P. P. and Sherratt, H. S. A. The effects of valproate on intermediary metabolism in isolated rat hepatocytes and intact rats. Biochem. Pharmacol 32 (1983) 1887–1892.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. M. Addison R. A. Chalmers P. Divry R. A. Harkness R. J. Pollitt

Rights and permissions

Reprints and permissions

Copyright information

© 1984 SSIEM and MTP Press Limited, Queen Square, Lancaster

About this chapter

Cite this chapter

Sherratt, H.S.A., Veitch, R.K. (1984). Animal Models for Dicarboxylic Aciduria. In: Addison, G.M., Chalmers, R.A., Divry, P., Harkness, R.A., Pollitt, R.J. (eds) Organic Acidurias. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5612-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5612-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8975-3

  • Online ISBN: 978-94-009-5612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics