Skip to main content

Gamow’s Theory of Alpha-Decay

  • Chapter
The Kaleidoscope of Science

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 94))

Abstract

George Gamow burst upon the European community of physicists like a meteor from outer space. The origin of his trajectory was distant Leningrad; his point of impact was Göttingen;. The time was mid-June 1928. The impression Gamow made has been recorded by Léon Rosenfeld. “I shall never forget,” Rosenfeld recalled, “the first time he appeared in Göttingen — how could anyone who has ever met Gamow forget his first meeting with him — a Slav giant, fair haired and speaking a very picturesque German; in fact he was picturesque in everything, even in his physics.”1 Gamow had learned German from a private tutor as a youth in Odessa with the result, he later recalled, that “I’m terribly poor inder,die,das, and my grammar is horrible, but pronunciation good.”2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. L. Rosenfeld, “Nuclear Physics, Past and Future,” in:Nuclear Structure Study with Neutrons, eds. M. Nève de Mévergnies, P. Van Assche, and J. Vervier ( Amsterdam: North Holland, 1966 ), p. 483.

    Google Scholar 

  2. Interview with Charles Weiner, April 25, 1968, A.I.P. Center for History of Physics, New York, p. 12. Italics added.

    Google Scholar 

  3. H. Bethe, “Nuclear Physics B. Nuclear Dynamics, Theoretical,”Rev. Mod. Phys. 9 (1937): 161.

    Article  Google Scholar 

  4. E. Rutherford and T. Royds, “Spectrum of the Radium Emanation,” Nature 78 (1908): 220–221; Phil. Mag. 16 (1908): 313–317; reprinted in:The Collected Papers of Lord Rutherford of Nelson(hereafter cited as CPR), ed. James Chadwick, Vol. 2 (London: George Allen and Unwin, 1963), pp. 70–71, 84–88.

    Article  Google Scholar 

  5. E. Rutherford, “The Scattering of α and β Particles by Matter and the Structure of the Atom,”Phil. Mag. 21 (1911): 669–688; reprinted in CPR, Vol. 2, pp. 238–254. See also John L. Heilbron, “The Scattering of α and β Particles and Rutherford’s Atom ”Arch. Hist. Exact Sci. 4 (1968): 247–307.

    Google Scholar 

  6. O. v. Baeyer, O. Hahn and Lise Meitner, “Über die β-Strahlen des aktiven Niederschlags des Thoriums,”Phys. Zeit. 12(1911): 273–279; “Nachweis von β-Strahlen bei Radium D,” ibid.: 378–379; “Das Magnetische Spektrum der β-Strahlen des Thoriums,”ibid. 13 (1912): 264–266. These results were confirmed by J. Danysz, “Sur les rayons β de la famille du radium,” Comptes rendus 153 (1911): 339–341; Le Radium 9 (1912): 1–5.

    Google Scholar 

  7. E. Rutherford, “The Origin of β and γ Rays from Radioactive Substances,”Phil. Mag. 24 (1912): 453–462; reprinted in: CPR, Vol. 2, pp. 280–287 (quote on p. 286).

    Google Scholar 

  8. A. van den Broek, “Infra-atomic Charge,”Nature92 (1913): 373.

    Google Scholar 

  9. E. Rutherford and H. Robinson, “Heating Effect of Radium and its Emanation,”Phil. Mag. 25 (1913): 312–330; reprinted in: CPR, Vol. 2, pp. 312–327.

    Google Scholar 

  10. E. Rutherford, “The Structure of the Atom,” Phil. Mag. 27 (1914): 488–498; reprinted in: CPR, Vol. 2, pp. 423–431.

    Google Scholar 

  11. J. Chadwick, “Intensitätsverteilung im magnetischen Spektrum der β-Strahlen von Radium B+C,” Ber. d.Deutsch. Phys. Gesell. 12 (1914): 383–391.

    Google Scholar 

  12. R.H. Stuewer, “The Nuclear Electron Hypothesis,” in:Otto Hahn and the Rise of Nuclear Physics, ed. William R. Shea (Dordrecht / Boston / Lancaster: D. Reidel, 1983), pp. 19–67.

    Google Scholar 

  13. E. Rutherford, “Collision of a Particles with Light Atoms. IV. An Anomalous Effect in Nitrogen,”Phil. Mag. 37 (1919): 581–587; reprinted in: CPR, Vol. 2, pp. 585–590.

    Google Scholar 

  14. E. Rutherford, “Nuclear Constitution of Atoms,”Proc. Roy. Soc. [A] 97 (1920): 374–400; reprinted in: CPR, Vol. 3, pp. 14–38.

    Article  Google Scholar 

  15. See Stuewer, “The Nuclear Electron Hypothesis” (note 12).

    Google Scholar 

  16. “Anomalous Effect” (note 13), CPR, p. 589

    Google Scholar 

  17. E. Rutherford and J. Chadwick, “The Artificial Disintegration of Light Elements,”Phil. Mag. 42 (1921): 809–825; reprinted in:CPR, Vol. 3, pp. 48–62 (figure on p. 60).

    Google Scholar 

  18. P.M.S. Blackett, “The Ejection of Protons from Nitrogen Nuclei, Photographed by the Wilson Method,”Proc. Roy. Soc. [A] 107 (1925): 349–360.

    Article  Google Scholar 

  19. E. Rutherford and J. Chadwick, “The Disintegration of Elements by a Particles,”Phil. Mag. 44 (1922): 417–432; reprinted in:CPR, Vol. 3, pp. 67–80.

    Google Scholar 

  20. See his comments in:Nuclear Physics in Retrospect: Proceedings of a Symposium on the 1930s, ed. Roger H. Stuewer ( Minneapolis: University of Minnesota Press, 1979 ), p. 321.

    Google Scholar 

  21. Karl K. Darrow, “Some Contemporary Advances in Physics — XXII Transmutation,”Bell Sys. Tech. J. 10 (1931): 628–655; reprinted in Bell Tel. Sys. Tech. Pub. (Monograph B- 596), 28 pp. (quote on p. 14, where the controversy is also summarized).

    Google Scholar 

  22. One key document in the controversy is J. Chadwick, “Observations Concerning the Artificial Disintegration of Elements,”Phil. Mag. 2 (1926): 1056–1075.

    Google Scholar 

  23. See Chadwick’s letters to E. Rutherford, December 9 and 12 [1927], in the Rutherford Correspondence, Cambridge University Library (hereafter RC).

    Google Scholar 

  24. See Chadwick’s interview with Charles Weiner, April 15–21, 1969, A.I.P. Center for History of Physics, New York, pp. 61–63.

    Google Scholar 

  25. See for example E. Rutherford, F.A.B. Ward, and C. E. Wynn-Williams, “A New Method of Analysis of Groups of Alpha Rays. (1) The Alpha-Rays from Radium C, Thorium C, and Actinium C,”Proc. Roy. Soc. [A] 129 (1930): 211–234; reprinted in:CPR, Vol. 3, pp. 225–246.

    Article  Google Scholar 

  26. E. Rutherford and J. Chadwick, “Scattering of a-particles by Atomic Nuclei and the Law of Force,”Phil. Mag. 50 (1925): 889–913; reprinted in:CPR, Vol. 3, pp. 143–163.

    Google Scholar 

  27. P. Debye and W. Hardmeier, “Anomale Zerstreuung von α-Strahlen,”Phys. Zeit. 21 (1926): 196–199.

    Google Scholar 

  28. E. Rutherford, “Atomic Nuclei and their Transformations,”Proc. Phys. Soc. 39 (1927): 359–372; reprinted in:CPR, Vol. 3, pp. 164–180; see especially pp. 178–179.

    Article  Google Scholar 

  29. E. Rutherford,Phil. Mag. 4 (1927): 580–605; reprinted in:CPR, Vol. 3, pp. 181–202.

    Google Scholar 

  30. H. Geiger and J.M. Nuttall, “The Ranges of the a Particles from Various Radioactive Substances and a Relation between Range and Period of Transformation,”Phil Mag. 22 (1911): 613–629

    Google Scholar 

  31. H. Geiger and J.M. Nuttall, “The Ranges of the a Particles from Uranium,”Phil Mag. 23 (1912): 439–445.

    Google Scholar 

  32. E. Rutherford, “Structure” (note 29),CPR, Vol. 3, p. 196.

    Google Scholar 

  33. For further biographical information see George Gamow,My World Line: An Informal Autobiography (New York: Viking Press, 1970) and Gamow’s interview with Charles Weiner (note 2).

    Google Scholar 

  34. G. Gamow and D. Ivanenko, “Zur Wellentheorie der Materie,”Zeit. f. Phys. 39 (1926): 865–868.

    Article  Google Scholar 

  35. Gamow recalled (My World Line, note 32, p. 52) that the resulting publication, W. Prokofiew and G. Gamow, “Anomale Dispersion an den Linien der Hauptserie des Kaliums (Verhältnis der Dispersionskonstanten des roten und violetten Dubletts),”Zeit. f. Phys. 44 (1927): 887–892, took him completely by surprise when it appeared — Rogdestvenski had given the research to Prokofiew for completion without Gamow’s knowledge.

    Article  Google Scholar 

  36. SeeMy World Line (note 32), pp. 52–54.

    Google Scholar 

  37. See note 29.

    Google Scholar 

  38. My World Line, p. 60.

    Google Scholar 

  39. See Ulam’s “Foreword” to My World Line, p. ix.

    Google Scholar 

  40. G. Gamow, “Zur Quantentheorie des Atomkernes,”Zeit. f. Phys. 51 (1928): 204–212.

    Article  Google Scholar 

  41. D. Enskog, “Das Bohrsche Magneton und die Radioaktivität,”Zeit. f. Phys. 45 (1927): 852–868.

    Article  Google Scholar 

  42. D. Enskog, “Magnetismus und Kernbau,”Zeit. f Phys. 52 (1928): 203–220

    Article  Google Scholar 

  43. D. Enskog, “Über den Verlauf der α-Umwandlung,”Zeit. f Phys. 53 (1929): 639–645.

    Article  Google Scholar 

  44. Gamow, “Quantentheorie” (note 39), p. 204.

    Google Scholar 

  45. Ibid., p. 205. See also J. R. Oppenheimer, “Three Notes on the Quantum Theory of Aperiodic Effects,”Phys. Rev. 31 (1928): 66–81

    Article  Google Scholar 

  46. Lothar Nordheim, “Zur Theorie der Thermischen Emission und der Reflexion von Electronen an Metallen,”Zeit. f. Phys. 46 (1927): 833–855.

    Article  Google Scholar 

  47. Gamow, “Quantentheorie” (note 39), p. 208. The barrier width has been misprinted as e instead of l.

    Google Scholar 

  48. My World Line (note 32), pp. 60–61.

    Google Scholar 

  49. “Quantentheorie” (note 39), p. 212.

    Google Scholar 

  50. “Nuclear Physics” (note 1), p. 483.

    Google Scholar 

  51. M. Born, “Zur Theorie des Kernzerfalls,” Zeit. f. Phys. 58 (1929): 306–321.

    Article  Google Scholar 

  52. G. Gamow and F. G. Houtermans, “Zur Quantenmechanik des radioaktiven Kerns,”Zeit. f. Phys. 52 (1928): 496–509.

    Article  Google Scholar 

  53. This expression for the decay constant, as Gregory Breit pointed out to Gamow and Houtermans by letter, contains a calculational error: the first two terms should be In (4πm/h) + 2 In v. The difference is unimportant, as it results only in slightly larger absolute values assumed for the radii r0. See R. Atkinson and F.G. Houtermans, “Zur Quantenmechanik der α-Strahlung,”Zeit. f Phys. 58 (1929): 493, footnote.

    Article  Google Scholar 

  54. “Quantenmechanik” (note 50), p. 509.

    Google Scholar 

  55. My World Line(note 32), pp. 63–64. It appears that in the event Gamow’s stipend came from the Rask-Ørsted-Fond. See G. Gamow, “Bemerkung zur Quantentheorie des radioaktiven Zerfalls,”Zeit. f. Phys. 53 (1929): 604.

    Article  Google Scholar 

  56. These letters are in the Bohr Scientific Correspondence (hereafter BSC) in the Archive for History of Quantum Physics (hereafter AHQP). There are copies of the AHQP in the A.I.P. Center for History of Physics, New York; the American Philosophical Society Library, Philadelphia; the Bohr Institute, Copenhagen; the University of California, Berkeley; the University of Minnesota, Minneapolis; the Accademia dei XL, Rome; the Science Museum, London; and the Deutsches Museum, Munich. By October 25, 1928, Bohr could write to Joffe extolling Gamow’s scientific gifts. Joffe actually did not receive this letter, so Bohr had to write him again on December 27 enclosing a copy of his earlier letter.

    Google Scholar 

  57. R.W. Gurney and E.U. Condon,Nature, 122 (1928): 439.

    Article  Google Scholar 

  58. Gurney and Condon’s concluding sentences pleased both authors. See E.U. Condon, “Tunneling — How It All Started,”Amer. J. 46 (1978): 319–323, especially p. 320.

    Google Scholar 

  59. G. Gamow “The Quantum Theory of Nuclear Disintegration,”Nature122 (1928): 805–806.

    Article  Google Scholar 

  60. R. W. Gurney and E. U. Condon, “Quantum Mechanics and Radioactive Disintegration,” Phys. Rev. 33 (1929): 127–140.

    Article  Google Scholar 

  61. Ibid.: 127, footnote. The occasion coincided with the dedication of the new University of Minnessota physics building. See Condon, “Tunneling” (note 55), p. 320.

    Google Scholar 

  62. “Tunneling” (note 55), pp. 319 and 322.

    Google Scholar 

  63. J.R. Oppenheimer, “On the Quantum Theory of the Autoelectric Field Currents, ”Proc. Nat. Acad. Sci. 14 (1928): 363–365.

    Article  Google Scholar 

  64. R.H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. Roy. Soc. [A] 119 (1928): 173–181.

    Article  Google Scholar 

  65. See N. F. Mott’s obituary notice of Gurney inNature 171 (1953): 910. Condon’s article (note 55, pp. 321–322) makes it clear that Gurney–s textbook writing after the war was to a great degree necessitated by his inability to secure a security clearance and hence a stable position, for unknown political reasons.

    Google Scholar 

  66. “Quantum Mechanics” (note 57), p. 130.

    Google Scholar 

  67. G. Wentzel, “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,”Zeit. f. Phys. 38 (1926): 518–529.

    Article  Google Scholar 

  68. See note 40.

    Google Scholar 

  69. “Quantum Mechanics” (note 58).

    Google Scholar 

  70. Ibid., pp. 137–138. Also see Condon, “Tunneling” (note 55), p. 320.

    Google Scholar 

  71. Gamow, “Quantum Theory” (note 57), p. 806.

    Google Scholar 

  72. G. Gamow, “Zur Quantentheorie der Atomzertriimmerung,”Zeit. f. Phys. 52 (1928): 510–515 (the quote is on p. 510).

    Article  Google Scholar 

  73. E. S. Bieler, “The Large-Angle Scattering of α-Particles by Light Nuclei,”Proc. Roy. Soc. [A] 105 (1924): 434–450.

    Article  Google Scholar 

  74. Gamow, “Zur Quantentheorie” (note 69), p. 513.

    Google Scholar 

  75. Ibid., p. 514.

    Google Scholar 

  76. W. Bothe and H. Franz, “Atomzertrümmerung durch α-Strahlen von Polonium,”Zeit. f. Phys. 43 (1927): 456–465;

    Article  Google Scholar 

  77. W. Bothe and H. Franz, “Atomtrümmer, reflektierte α-Teilchen und durch a-Strahlen erregte Rdntgenstrahlen,”Zeit. f. Phys. 49 (1928): 1–26

    Article  Google Scholar 

  78. Gamow, “Zur Quantentheorie” (note 69), p. 515. G. now cited the single offending paper, G. Kirsch and H. Pettersson, “Die Zerlegung der Elemente durch Atomzertrümmerung,”Zeit. f. Phys. 42 (1927): 641–678.

    Article  Google Scholar 

  79. Gamow, “Zur Quantentheorie” (note 69), p. 515.

    Google Scholar 

  80. M. von Laue, “Notiz zur Quantentheorie des Atomkerns,”Zeit. f. Phys. 52 (1928): 726–734.

    Article  Google Scholar 

  81. See note 57.

    Google Scholar 

  82. “Notiz” (note 76), p. 730.

    Google Scholar 

  83. Ibid., p. 733. Von Laue cited Nernst’s book, Das Weltgebäude im Licht der Neueren Forschung (Berlin: Springer, 1921), for the latter’s hypothesis.

    Google Scholar 

  84. “Bemerkung” (note 53), 601–604. Gamow acknowledges von Laue–s gesture in his first sentence, and the discussions with Bohr in his last.

    Google Scholar 

  85. G.I. Pokrowski, “Über das Herausschleudern von α-Teilchen aus Atomkernen radioaktiver Stoffe durch kurzwellige Strahlung, ”Zeit. f. Phys. 59 (1930): 427–432;

    Article  Google Scholar 

  86. G.I. Pokrowski, Part II,Zeit. f. Phys. 60 (1930): 845–849

    Google Scholar 

  87. G.I. Pokrowski, “Über eine mögliche Wirkung kurzwelliger Strahlung auf Atomkerne,”Zeit. f. Phys. 63 (1930): 561–573

    Article  Google Scholar 

  88. G.I. Pokrowski, “Zur Theorie der möglichen Wirkung von Strahlung auf Atomkerne,”Ann. d. Phys. 9 (1931): 505–512.

    Article  Google Scholar 

  89. H. Herszfinkiel and H. Dobrowolska, “Zu Herrn G.I. Pokrowskis Arbeiten, etc ”Zeit. f. Phys. 62 (1930): 432–434.

    Article  Google Scholar 

  90. J. Kudar, “Bemerkung zur quantenmechanischen Deutung der Radioaktivität, ”Zeit. f. Phys. 53 (1929): 61–66

    Article  Google Scholar 

  91. J. Kudar, “Zur Quantenmechanik der Radioakivität,”Zeit. f. Phys. 53 (1929): 95–99, 134–137

    Article  Google Scholar 

  92. J. Kudar,Zeit. f. Phys. 54 (1929): 297–299 (Nachtrag);

    Article  Google Scholar 

  93. J. Kudar, “Die wellenmechanische Bedingung för die Stabilität der Atomkerne,”Zeit. f. Phys. 57 (1929): 710–712;

    Article  Google Scholar 

  94. J. Kudar, “Über die Verweilzeit der Korpuskeln im Gebiet der ’negativen kinetischen Energie’,”Zeit. f. Phys. 58 (1929): 1–2

    Article  Google Scholar 

  95. J. Kudar, A related criticism was entered by E. H. Kennard, „Über Potentialschwellen und radioaktiven Zerfall in der Quantenmechanik,”Phys. Zeit. 30 (1929): 495–497.

    Google Scholar 

  96. J. Kudar, “Wellenmechanische Begründung der Nernstschen Hypothese von der Wiederentstehung radioaktiven Element”Zeit. f. Phys.53 (1929): 166–167

    Article  Google Scholar 

  97. J. Kudar, Part II,Zeit. f. Phys.60 (1930): 262–297.

    Google Scholar 

  98. J. Kudar, “Die wellenmechanische Charakter des β-Zerfalls,” Zeit. f. Phys. 57 (1929): 257–260

    Article  Google Scholar 

  99. J. Kudar, Parts II and III, Zeit. f. Phys. 60 (1930): 168–175 and 176–180;

    Google Scholar 

  100. J. Kudar, Part IV, Zeit. f. Phys: 686–689;

    Google Scholar 

  101. J. Kudar, “Die β-Strahlung und das Energieprinzip,” Zeit. f. Phys64 (1930): 402–404;

    Google Scholar 

  102. J. Kudar, “Über die Eigenschaften der Kernelektronen,” Zeit. f. Phys32 (1931): 34–37. For Schrodinger’s evaluations of Kudar, see Schrodinger to Bohr, January 1, 1929; September 25, 1930; and April 29, 1931, BSC. For Bohr’s, see Bohr to Schrodinger, May 8, 1931, BSC.

    Google Scholar 

  103. T. Sexl, “Zur Quantentheorie des Atomkerns,” Zeit. f. Phys54 (1929): 445–448

    Article  Google Scholar 

  104. T. Sexl, “Zur wellenmechanischen Berechnung der radioaktiven Zerfallskonstanten,” Zeit. f. Phys56 (1929): 62–71;

    Article  Google Scholar 

  105. T. Sexl, “Zur Theorie der bei der wellenmechanischen Behandlung des radioaktiven α- Zerfalls auftretenden Differentialgleichung,” Zeit. f. Phys: 72–93.

    Google Scholar 

  106. R. d’E. Atkinson and F. G. Houtermans, “Zur Quantenmechanik der α-Strahlung,” Zeit. f. Phys58 (1929): 478–486.

    Article  Google Scholar 

  107. T. Sexl, “Zur Quantenmechanik der α-Strahlung,” Zeit. f. Phys59 (1930): 579–582.

    Article  Google Scholar 

  108. R. d’E. Atkinson, “Über Resonanzund Dampfung in der Theorie des Atomkerns,” Zeit. f. Phys64 (1930): 507–519, especially p. 515.

    Article  Google Scholar 

  109. F.G. Houtermans, “Neuere Arbeiten iiber Quantentheorie des Atomkerns,” Ergeb. d. exakt. Naturw. 9 (1930): 123–221, especially footnote 1, p. 152.

    Article  Google Scholar 

  110. T. Sexl, “Zur quantitativen Theorie der radioaktiven α-Emission, ” Zeit. f Phys.81 (1933): 163–177 (the quote is on p. 165).

    Article  Google Scholar 

  111. T. Sexl, See also “Zur Theorie der Atomzertrümmerung,” Zeit. f Phys. 87 (1934): 105–126;

    Article  Google Scholar 

  112. T. Sexl, “Bericht über Fragen der Kernphysik,” Phys. Zeit. 35 (1934): 119– 141.

    Google Scholar 

  113. Chr. Møller, “Der Vorgang des radioactiven Zerfalls unter Berücksichtigung der Relativitätstheorie,” Phys. Zeit. 55 (1929): 451–466.

    Article  Google Scholar 

  114. S. Gupta, Uber den radioaktiven Zerfall nach den relativistischen Wellengleichungen,” Zeit. f Phys. 69 (1931): 686–698.

    Article  Google Scholar 

  115. See note 48 (the quote is on p. 306).

    Google Scholar 

  116. H.B.G. Casimir, “Bemerkung zur Gamowschen Theorie des radioaktiven Zerfalls,” Physica1 (1934): 193–198 (the quote is on p. 193).

    Article  Google Scholar 

  117. “Neuere Arbeiten” (note 89), p. 151.

    Google Scholar 

  118. See note 47.

    Google Scholar 

  119. See C. F. von Weizsäcker, Die Atomkerne: Grundlagen und Anwendungen ihrer Theorie(Leipzig: Akademische Verlagsgesellschaft, 1937), pp. 93–99, especially pp. 94–95.

    Google Scholar 

  120. See note 89.

    Google Scholar 

  121. “Nuclear Physics” (note 3), p. 162. Bethe himself then went on to give a derivation “which seems about the simplest of the correct ones.”

    Google Scholar 

  122. Interview (note 2), p. 26. We also know that Ettore Majorana, at least, wrote his 1929 doctoral thesis, “Sulla meccanica dei nuclei radioattivi,” on the new theory.

    Google Scholar 

  123. See E. Amaldi, “Ettore Majorana, Man and Scientist,” in Strong and Weak Interactions — Present Problems ( New York: Academic Press, 1966 ), p. 17.

    Google Scholar 

  124. See note 40.

    Google Scholar 

  125. See Bohr to Fowler, December 14, 1928, BSC, where Bohr proposes Gamow’s visit and also tells Fowler that Hartree and Mott will be able to describe Gamow’s plans and work personally. Also see Gamow’s My World Line (note 32), pp. 66–69, where Gamow claims that Bohr wrote to Rutherford directly. However, Gamow probably was mistaken about that, as there is no letter extant in the Rutherford correspondence from Bohr during the period in question.

    Google Scholar 

  126. Rutherford to Bohr, December 19, 1928, BSC. Also see Hartree to Bohr, December 21,1928, BSC, in which Hartree says he talked to Fowler, and also to Rutherford a few days earlier about Gamow’s visit.

    Google Scholar 

  127. The exact dates of Gamow’s visit are known from a letter from Bohr to Hartree, January 5,1929, BSC, and from Bohr to Fowler, February 14, 1929, BSC.

    Google Scholar 

  128. My World Line (note 32), p. 68.

    Google Scholar 

  129. Mott to Bohr, undated, no doubt February 1929, BSC.

    Google Scholar 

  130. Proc. Roy. Soc. [A] 123 (1929): 373–390. Rutherford’s remarks occupy pp. 373–382.

    Google Scholar 

  131. K. K. Darrow, ’Contemporary Advances in Physics — XXVIII. The Nucleus, Third Part,” Bell Sys. Tech. J. 13 (1934): 580–613; reprinted in Bell Tel. Sys. Tech. Pub. (Monograph B- 810), 48 pp. (the quote is on p. 29). Rutherford’s reaction was explicitly reported in Chadwick’s interview (note 24), p. 51.

    Google Scholar 

  132. E. Rutherford, J. Chadwick, and C.D. Ellis, Radiations from Radioactive Substances(New York: Macmillan and Cambridge: Cambridge University Press, 1930 ), pp. 326–333.

    Google Scholar 

  133. Ibid., p. 327. We know of Chadwick’s authorship of these remarks from his interview (note 24), p. 49.

    Google Scholar 

  134. Rutherford’s model was also insightfully criticized earlier by G. Gentile, “Sulla teoria dei satelliti de Rutherford,” Atti della Reale Accad. Naz. dei Lincei1 (1928): 346–349. E. Segre recalls (private communication, October 1979) that Gentile often visited Rome, where he conveyed his opposition to Fermi’s group.

    Google Scholar 

  135. See Mott to Bohr, September 16, 1930, BSC.

    Google Scholar 

  136. See Fowler to Bohr, April 9, 1929, BSC. Also see Fowler and A.H. Wilson, “A Detailed Study of the ’Radioactive Decay’ of, and the Penetration of α-Particles into, a Simplified One-Dimensional Nucleus,” Proc. Roy. Soc. [A] 124 (1929): 493–501

    Article  Google Scholar 

  137. R. W. Gurney, “Nuclear Levels and Artificial Disintegration,” Nature123 (1929): 565. Condon later pointed out that, to his chagrin, he talked Gurney out of this idea in Princeton and hence delayed its publication, but Gurney persevered and published it from Tokyo when he was “no longer subject to my bad influence.” See “Tunneling” (note 55), p. 321.

    Article  Google Scholar 

  138. “Detailed Study” (note 113), p. 501.

    Google Scholar 

  139. J. Chadwick, and G. Gamow, “Artificial Disintegration by α-Particles,” Nature 126 (1930): 54–55.

    Article  Google Scholar 

  140. R. d’E. Atkinson, “Über Resonanz und Dämpfung in der Theorie des Atomkerns,” Zeit. f. Phys. 64 (1930): 507–519.

    Article  Google Scholar 

  141. G. Hoffmann and H. Pose, “Nachweis von Atomtrümmern durch Messung eines einzelnen H-Strahls,” Zeit. f. Phys. 56 (1929): 405–415;

    Article  Google Scholar 

  142. H. Pose, “Messungen von Atomtriimmern aus Aluminium, Beryllium, Eisen, und Kohlenstoff nach der Riickwartsmethode,” Zeit. f. Phys. 60 (1930): 156–167.

    Article  Google Scholar 

  143. H. Pose, “Über die diskreten Reichweitengruppen der H-Teilchen aus Aluminum. I. Abhängigkeit der Ausbeute und Energie der H-Teilchen von der Primärenergie,” Zeit. f. Phys. 64 (1930): 1–21.

    Article  Google Scholar 

  144. H. Pose, “Über Richtungsverteilung der von Polonium-α-Strahlen aus Aluminum ausgelösten H-Teilchen,” Phys. Zeit. 31 (1930): 943–945;

    Google Scholar 

  145. J. Chadwick, J.E.R. Constable, and E. C. Pollard, “Artificial Disintegration by α-Particles,” Proc. Roy. Soc. [A] 130 (1931): 463–489;

    Article  Google Scholar 

  146. K. Diebner and H. Pose, “Über die Resonanzeindringung von α- Teilchen in den Aluminumkern,” Zeit. f. Phys. 75 (1932): 753–762

    Article  Google Scholar 

  147. A summary is provided in M. A. Tuve, “The Atomic Nucleus and High Voltages,” J. Franklin Inst. 216 (1933): 1–38, especially p. 20.

    Article  Google Scholar 

  148. W. Bothe and H. Becker, “Kiinstliche Erregung von Kern-γ-Strahlen,” Zeit. f. Phys. 66 (1930): 289–310.

    Article  Google Scholar 

  149. W. Bothe, “α-Strahlen, künstliche Kernumwandlung und -Anregung, Isotope,” in: Convegno di Fisica Nucleare Ottobre 1931-IX(Rome: Reale Academia d’ltalia, 1932-X), pp. 83–106.

    Google Scholar 

  150. See E.T.S. Walton to E.M. McMillan, April 1 1, 1977, in: Nuclear Physics in Retrospect (note 20), pp. 141–142.

    Google Scholar 

  151. Gamow, My World Line (note 32), p. 83.

    Google Scholar 

  152. J. Cockcroft and E.T.S. Walton, “Experiments with High Velocity Positive Ions. II. — The Disintegration of Elements by High Velocity Protons,” Proc. Roy. Soc. [A] 137 (1932): 229–242.

    Article  Google Scholar 

  153. See Gamow to Bohr, January 6, 1929, BSC, where Gamow reports that en route to Cambridge he stopped off in Leiden, where P. Ehrenfest was greatly interested in his “Tropfchenmodell.” Gamow was partly influenced by recent studies of Guido Beck. See for example his paper „Über die Systematik der Isotopen. II.,” Zeit. f. Phys. 50 (1928): 548–554.

    Article  Google Scholar 

  154. See note 107. Gamow’s remarks are on pp. 386–387. See also “Über die Struktur des Atomkernes,” Phys. Zeit. 30 (1929): 717–720.

    Google Scholar 

  155. G. Gamow, “Mass Defect Curve and Nuclear Constitution,” Proc. Roy Soc. [A] 126 (1930): 632–644.

    Article  Google Scholar 

  156. Gamow–s “Tropfchenmodell” was widely discussed at the time; in particular it was picked up by C. F. von Weizsäcker, “Zur Theorie der Kernmassen,” Zeit. f. Phys. 96 (1935): 431–458.

    Article  Google Scholar 

  157. R. d’E. Atkinson and F.G. Houtermans, “Zur Frage der Aufbaumoglichkeit der Elemente in Sternen,” Zeit. f. Phys. 54 (1929): 656–665;

    Article  Google Scholar 

  158. M. Delbruck and G. Gamow, “Übergangswahrscheinlichkeiten von angeregten Kernen,” Zeit. f. Phys. 72 (1931): 492–499.

    Article  Google Scholar 

  159. G. Gamow, “Fine Structure of α-Rays,” Nature126 (1930): 397. The famous photograph commemorating the signing is reproduced in My World Line (note 32), p. 87, with, however, an incorrect caption — the other person on the photo is not Landau but Rosenfeld; Peierls took the picture.

    Article  Google Scholar 

  160. G. Gamow, Also, for an earlier related article see “Successive α- Transformations,” Nature123 (1929): 606, and for a later one see

    Google Scholar 

  161. G. Gamow, “Über die Theorie des radioaktiven a-Zerfalls, der Kernzertrlimmerung und die Anregung durch a-Strahlen,” Phys. Zeit. 32 (1931): 651–655

    Google Scholar 

  162. G. Gamow, Constitution of Atomic Nuclei and Radioactivity (Oxford: Clarendon Press, 1931). The book is dedicated “To the Cavendish Laboratory, Cambridge” and the Preface was signed in Copenhagen on May 1, 1931. Gamow had been much concerned with the behavior of the nuclear electrons for years, but especially following O. Klein’s discovery of the so-called Klein paradox in Copenhagen at the end of 1928.

    Google Scholar 

  163. See O. Klein, “Die Reflexion von Elektronen an einerrl Potentialsprung nach der relativistischen Dynamik von Dirac,” Zeit. f. Phys. 53 (1929): 157–165..

    Article  Google Scholar 

  164. See his interview (note 2), p. 34.

    Google Scholar 

  165. See My World Line (note 32), Chapters 3–6, pp. 55–133.

    Google Scholar 

  166. G. Gamow, “Quantum Theory of Nuclear Structure,” in: Convegno ( note 122), pp. 65-81.

    Google Scholar 

  167. See for example his letters to Bohr, January 20,1935, BSC, and to Rutherford, February 5, 1935, RC.

    Google Scholar 

Download references

Authors

Editor information

Edna Ullmann-Margalit

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Stuewer, R.H. (1986). Gamow’s Theory of Alpha-Decay. In: Ullmann-Margalit, E. (eds) The Kaleidoscope of Science. Boston Studies in the Philosophy of Science, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5496-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5496-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2159-4

  • Online ISBN: 978-94-009-5496-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics