Skip to main content

Interatomic Forces and the Simulation of Cracks

  • Chapter
Chemistry and Physics of Fracture

Part of the book series: NATO ASI Series ((NSSE,volume 130))

Abstract

What can solid state physics contribute to the understanding of fracture? If we leave aside the field of continuum mechanics, since the Workshop is concerned mainly with the atomistics of fracture, the current theoretical approaches have two extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eberhart ME, Johnson KH, Messmer RP and Briant CL, Atomistics of Fracture, pp 255–280, eds. R.M.Latanision and J.R.Pickens, Plenum, New York, (1983).

    Google Scholar 

  2. Briant CL and Messmer RP, Acta metall. 30, 1811, (1982).

    Article  CAS  Google Scholar 

  3. Sinclair JE, Computer Simulation in Physical Metallurgy, pp 107–128, ed. G. Jacucci, Reidel, Dordrecht, (1986).

    Google Scholar 

  4. Bacon DJ and Liang MH, Interatomic Potentials and Crystalline Defects, pp 181–200, ed. Jong K. Lee, The Metallurgical Society of AIME, (1981).

    Google Scholar 

  5. Takeuchi S, Interatomic Potentials and Crystalline Defects, pp 201–21, ed. Jong K. Lee, The Metallurgical Society of AIME, (1981).

    Google Scholar 

  6. Vitek V and Yamaguchi M, Interatomic Potentials and Crystalline Defects, pp 223–48, ed. Jong K. Lee, The Metallurgical Society of AIME, (1981).

    Google Scholar 

  7. Kuramoto E, Aono E and Tsutsumi T, Crystal Res. and Technol. 19, 331, (1984).

    Article  CAS  Google Scholar 

  8. Sutton AP, International Metals Reviews 29, 377, (1984).

    CAS  Google Scholar 

  9. Hashimoto M, Ishida Y, Yamamoto R and Doyama M, Acta metall. 32, 1, (1984).

    Article  CAS  Google Scholar 

  10. Benesh GA and Inglesfield JE, J.Phys.C 17, 1595, (1984).

    Article  CAS  Google Scholar 

  11. Car R and Parrinello M, Phys.Rev.Lett. 55, 2471, (1985).

    Article  CAS  Google Scholar 

  12. Maeda K, Vitek V and Sutton AP, Acta metall. 30, 2001, (1982).

    Google Scholar 

  13. Sutton AP and Vitek V, Acta metall. 30, 2011, (1982).

    Article  CAS  Google Scholar 

  14. Daw MS and Baskes MI, Phys. Rev. Lett. 50, 1285, (1983).

    Article  CAS  Google Scholar 

  15. Daw MS and Baskes MI, Phy. Rev. B 29, 6443, (1984).

    Article  CAS  Google Scholar 

  16. Foiles SM, Phys. Rev. B 32, 7685, (1985).

    Article  CAS  Google Scholar 

  17. Finnis MW and Sinclair JE, Phil. Mag. A 50, 45, (1984). Erratum, Phil. Mag. A 53, 161, (1986).

    CAS  Google Scholar 

  18. Matthai CL and Bacon DJ, Phil. Mag. A 52, 1, (1985).

    CAS  Google Scholar 

  19. Heine V, Haydock R, Bullett DW and Kelly MJ, Solid State Physics 35, eds. Ehrenreich, Seitz and Turnbull, Academic, New York, (1980).

    Google Scholar 

  20. Pettifor DG, Physical Metallurgy, Ch.3, eds. R.W.Cahn and P.Haasen, North Holland, Amsterdam, (1983).

    Google Scholar 

  21. Hashimoto M, Ishida Y, Wakayama S, Yamamoto R, Doyama M and Fujiwara T, Acta metall. 32, 13, (1984).

    Article  CAS  Google Scholar 

  22. Chadi DJ, J. Vac. Sci. Technol. 16, 1290, (1979).

    CAS  Google Scholar 

  23. Chadi DJ, Phys. Rev. B 19, 2074, (1979).

    CAS  Google Scholar 

  24. Masuda K and Sato A, Phil. Mag. A 44, 799, (1981).

    Article  CAS  Google Scholar 

  25. Masuda K, Yamamoto R and Doyama M, J. Phys. F, 13, 1407, (1983).

    Article  CAS  Google Scholar 

  26. Turchi P and Ducastelle F, The Recursion Method and Its Applications, pp 104–119, eds. D.G.Pettifor and D.L.Weaire, Springer Verlag, Berlin, (1985).

    Google Scholar 

  27. Beer NR, PhD Thesis, University of London, (1985).

    Google Scholar 

  28. Legrand B, Phil.Mag.A, 52, 83, (1985).

    Article  CAS  Google Scholar 

  29. Boswarva IM and Esterling DM, J. Phys. C, 15, L729, (1982).

    CAS  Google Scholar 

  30. Treglia G, Desjonquères MC and Spanjaard D, J. Phy. C 16, 2407, (1983).

    CAS  Google Scholar 

  31. Treglia G, Ducastelle F and Spanjaard D, J. Physique 41, 281, (1980).

    Article  CAS  Google Scholar 

  32. Terakura I, Terakura K and Hamada N, Surf. Sci. 111, 479, (1981).

    Article  CAS  Google Scholar 

  33. Masuda-Jindo K, Hamada N and Terakura K, J. Phys.C 17, 1271, (1984).

    Article  Google Scholar 

  34. Moraitis G, Stupfel B and Gautier F, Phil. Mag. B, 52, 971, (1985).

    Article  CAS  Google Scholar 

  35. Finnis MW and Pettifor DG, The Recursion Method and Its Applications, pp 120–131, eds. D.G.Pettifor and D.L.Weaire, Springer Verlag, Berlin, (1985).

    Google Scholar 

  36. Pettifor DG and Podloucky R, J. Phys. C 19, 315, (1986).

    CAS  Google Scholar 

  37. Finnis MW, Sutton AP, Pettifor DG and Ohta Y, to be published.

    Google Scholar 

  38. Slater JC and Koster GF, Phys. Rev. 94, 1498, (1954).

    Article  CAS  Google Scholar 

  39. Coulson CA, Proc. Roy. Soc. 169 A, 413, (1939).

    Google Scholar 

  40. Penney WG, Proc. Roy. Soc. 158 A, 306, (1937).

    Google Scholar 

  41. Allan G, Ann. Phys. 5, 169, (1970).

    CAS  Google Scholar 

  42. Nex CMMN, Computer Physics Communications 34, 101, (1984).

    Article  Google Scholar 

  43. Beer E and Pettifor DG, Electronic Structure of Complex Systems, Plenum, New York, (1985)

    Google Scholar 

  44. Lennard-Jones JE, Proc. Roy. Soc. 158 A, 280, (1937).

    Google Scholar 

  45. Finnis MW, Kear KL and Pettifor DG, Phys. Rev. Lett. 52, 291, (1984).

    Article  CAS  Google Scholar 

  46. Wallace DC, Thermodynamics of Crystals, Wiley, New York, (1972)

    Google Scholar 

  47. Andersen OK, Phys. Rev. B 12, 3060, (1975).

    Article  CAS  Google Scholar 

  48. Pettifor DG, J. Phys. F 7, 613, (1978).

    Article  Google Scholar 

  49. Rice J and Thomson R, Phil. Mag. 29, 73, (1974).

    Article  CAS  Google Scholar 

  50. Sinclair JE and Finnis MW, Atomistics of Fracture, pp 1047–1051, eds. R.M.Latanision and J.R.Pickens, Plenum, New York, 1983.

    Google Scholar 

  51. Lin I.-H and Thomson R, Acta metall. 34, 187, (1986).

    Article  CAS  Google Scholar 

  52. Sayers CM, Phil. Mag. B 50, 635, (1984).

    Article  CAS  Google Scholar 

  53. Harris J, Phys. Rev. B 31, 1770, (1985).

    Article  CAS  Google Scholar 

  54. Andersen OK and Jepsen O, Phys. Rev. Lett. 53, 2571, (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Finnis, M.W. (1987). Interatomic Forces and the Simulation of Cracks. In: Latanision, R.M., Jones, R.H. (eds) Chemistry and Physics of Fracture. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3665-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3665-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8140-5

  • Online ISBN: 978-94-009-3665-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics