Skip to main content

Theoretical Approaches to Materials Design: Intergranular Embrittlement

  • Chapter
Chemistry and Physics of Fracture

Part of the book series: NATO ASI Series ((NSSE,volume 130))

Abstract

One of the ultimate objectives for the electronic structure theory of solids is the first-principles design of materials. Major steps in this direction have already been taken in the form of parameter-free calculations, which are capable of yielding accurate descriptions of a number of structural, electronic, and magnetic properties of metals, semiconductors and even disordered alloys. Furthermore, extensions of these approaches to point defects (substitutional impurities, interstitials, and vacancies) and to interfaces and clean and covered surfaces are showing great promise. However, only recently has there been an attempt to correlate the results of electronic structure calculations with mechanical properties, and only in the past few years have the specific features of electronic structure that could give rise, for example, to brittle versus ductile behavior,1-5 been addressed. Indeed, despite the complex and manifold origins of mechanical behavior and the relatively poor characterization of the pertinent structures at the atomic level, general trends in certain mechanical properties may be correlated with specific features of electronic structure. An interesting illustration is the control of mechanical properties of semiconductors by electrically-active impurities.6 At relatively low temperatures (≲500°C) the dopants have been shown to affect yield stress and hardness through their influence on dislocation velocities,6-7 the effect being a particularly strong function of dopant concentration in Si and Ge.*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Briant and R. P. Messmer, Phil. Mag. B 42, 569 (1980); R. P. Messmer and C. L. Briant, Acta metall. 30, 457 (1982); R. P. Messmer and C. L. Briant, Acta metall. 30, 1811 (1982).

    Article  CAS  Google Scholar 

  2. R. Haydock, J. Phys. C 14, 3807 (1981).

    CAS  Google Scholar 

  3. W. Losch, Acta metall. 27, 1885 (1979).

    Google Scholar 

  4. M. Hashimoto, Y. Ishida, S. Wakayama, R. Yamamoto, M. Dcyama, and T. Fujiwara. Acta metall. 32, 13 (1984); S. Wakayama, M. Hashimoto, Y. Ishida, R. Yamamoto, and M. Doyama, Acta metall. 32, 21 (1984).

    Article  CAS  Google Scholar 

  5. M. E. Eberhart, K. H. Johnson, and R. M. Latanision, Acta metall. 32, 955 (1984);M. E. Eberhart, R. M. Latanision, and K. H. Johnson, Acta metall. 33, 1769 (1985).

    Article  CAS  Google Scholar 

  6. H. L. Frisch and J. R. Patel, Phys. Rev. Lett. 18, 784 (1967); J. R. Patel and P. E. Freeland, Phys. Rev. Lett. 18, 833 (1967).

    Article  Google Scholar 

  7. S. G. Roberts, P. Pirouz, and P. B. Hirsch, J. Mater. Sei. 20, 1739 (1985).

    Article  CAS  Google Scholar 

  8. E. M. Schulson, D. L. Davidson, and D. Viens, Metall. Trans. 14A, 1523 (1983).

    CAS  Google Scholar 

  9. S. Hanada, T. Ogura, S. Watanabe, O. Izumi, and T. Masumoto, Acta metall. 34, 13 (1986).

    CAS  Google Scholar 

  10. C. Y. Yang, K. H. Johnson, R. H. Holm, and J. G. Norman, Jr., J. Am. Chem. Soc. 97, 6596 (1977).

    Google Scholar 

  11. J. M. MacLaren, D. D. Vvedensky, J. B. Pendry, and R. W. Joyner, J. Chem. Soc. Faraday Trans (in press).

    Google Scholar 

  12. J. M. MacLaren, D. D. Vvedensky, J. B. Pendry, and R. W. Joyner, (to be published).

    Google Scholar 

  13. K. H. Johnson and F. C. Smith, Jr., Phys. Rev. B 5, 831 (1972); J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).

    Article  Google Scholar 

  14. M. F. Ashby, F. Spaepen, and S. Williams, Acta metall. 26, 1647 (1978).

    Google Scholar 

  15. J. B. Danese and J. W. D. Connally, J. Chem. Phys. 61, 3061 (1974).

    Google Scholar 

  16. D. A. Case, M. Cook, and M. Karplus, J. Chem. Phys. 73, 3294 (1980).

    Article  CAS  Google Scholar 

  17. E. Wimmer, C. L. Fu, and A. J. Freeman, Phys. Rev. Lett. 55, 2618 (1985).

    Google Scholar 

  18. T. Takasugi and O. Izumi, Acta metall. 33, 1259 (1985).

    Article  CAS  Google Scholar 

  19. R. C. Albers (unpublished). See also J. J. M. Buiting, J. Kubier, and F. M. Mueller, J. Phys. F 13, L179 (1983).

    Google Scholar 

  20. D. Hackenbracht and J. Kubler, J. Phys. F 10, 427 (1980).

    Article  CAS  Google Scholar 

  21. T. Takasugi and O. Izumi, Acta metall. 33, 1247 (1985).

    Article  CAS  Google Scholar 

  22. S. P. Walch and W. A. Goddard, III, Surf. Sci. 72, 645 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Eberhart, M.E., Vvedensky, D.D. (1987). Theoretical Approaches to Materials Design: Intergranular Embrittlement. In: Latanision, R.M., Jones, R.H. (eds) Chemistry and Physics of Fracture. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3665-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3665-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8140-5

  • Online ISBN: 978-94-009-3665-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics