Skip to main content

Aquatic Plants in Extreme Environments

  • Chapter
Vegetation of inland waters

Part of the book series: Handbook of vegetation science ((HAVS,volume 15-1))

Abstract

The intent of this chapter is to review the ecology of aquatic plants that inhabit physically and chemically extreme environments of inland waters. Such plants are fascinating in their own right, and their special characteristics have attracted the attention of a wide variety of disciplines. For instance, cyanobacterial mats in hot, saline habitats are modern analogs of Precambrian communities and therefore offer information about the origin of life (Schopf 1983). Furthermore, because microbial mats may have been the precursors of petroleum deposits such as the enormous oil shale reserves associated with the Green River Formation, U.S.A. (Parker & Leo 1965, Eugster & Hardie 1975), investigation of the diagenesis of the modern mats may help explain petroleum formation. Algae of highly saline waters are also a commercially exploited resource because of their high protein, glycerol or ß-carotene content (Smithsonian Science Information Exchange 1980, Shelef & Soeder 1980). Other examples where the study of plants in extreme environments aids modern science and technology include the search for extraterrestrial life (Billingham 1981, Ponnamperuma 1976) and the design of life-support systems for space crafts (Taub 1974). The application of new genetic engineering techniques now make it possible that salt tolerant crops can be developed with contributions of halophyte genomes (Hollaender 1979, Szalay & MacDonald 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasen, A. J., Eimhjellen, K. E. & Liaaen-Jensen, S. (1969) An extreme source of ß- carotene. Acta chem. Scand. 23: 2544–2545.

    PubMed  CAS  Google Scholar 

  • Aiba, S. & Ogawa, T. (1977) Assessment of growth yield of a blue-green alga, Spirulina platensis ,in axenic and continuous culture. J. Gen. Microbiol. 102: 179–182.

    Google Scholar 

  • Alexander, M. (1976) Natural selection and the ecology of microbial adaptation in a biosphere. In: Heinrich, M. R. (ed.), Extreme environments. Academic Press, New York, pp. 3–25.

    Google Scholar 

  • Allen, M. B. (1959) Studies with Cyanidium caldarium ,an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32: 270–277.

    PubMed  CAS  Google Scholar 

  • Amelunxen, R. E. & Murdock, A. L. (1978) Microbial life at high temperature: mechanisms and molecular aspects. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 217–278.

    Google Scholar 

  • Anderson, G. C. (1958) Some limnological features of a shallow, saline meromictic lake. Limnol. Oceanogr. 3: 259–270.

    Google Scholar 

  • Angino, E. E., Armitage, K. B. & Tash, J. L. (1964) Physicochemical limnology of Lake Bonney, Antarctica. Limnol. Oceanogr. 9: 207–217.

    Google Scholar 

  • Arai, S., Yamashita, M. & Fujimaki, M. (1976) Enzymatic modification for improving nutritional qualities and acceptability of proteins extracted from photosynthetic microorganisms Spirulina maxima and Rhodopseudomonas capsulatus. J. Nutr. Sci. Vitaminol. 22: 447–456.

    PubMed  CAS  Google Scholar 

  • Arango, M. (1981) Responses of microorganisms to temperature. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds.), Physiological plant ecology. I. Responses to the physical environment. Springer-Verlag, Berlin, pp. 339–369.

    Google Scholar 

  • Baas Becking, L. G. M., Kaplan, I. R. & Moore, D. (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68: 243– 284.

    Google Scholar 

  • Baker, J. M. (1970) The effects of oils on plants. Environ. Pollut. 1: 27–44.

    CAS  Google Scholar 

  • Baker, J. M. (1979) Responses of salt marsh vegetation to oil spills and refinery effluents. In: Jefferies, R. L. & Davy, A. J. (eds.), Ecological processes in coastal environments. Blackwell Scientific Publications, Oxford, pp. 529–542.

    Google Scholar 

  • Barbour, M. G. (1970) Is any angiosperm an obligate halophyte? Am. Midl. Nat. 84: 105–120.

    Google Scholar 

  • Barica, J. & Mur, L. (eds.) (1980) Hypertrophic ecosystems. Dr. W. Junk Publ, The Hague, 348 pp.

    Google Scholar 

  • Baross, J. A. & Morita, R. Y. (1978) Microbial life at low temperatures: ecological aspects. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 9–71.

    Google Scholar 

  • Baross, J. A. & Deming, J. W. (1983) Growth of ’black smoker’ bacteria at temperatures of at least 250 °C. Nature 303: 423–426.

    CAS  Google Scholar 

  • Bauld, J. 1981. Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81: 87–111.

    Google Scholar 

  • Bayly, I. A. E. & Williams, W. D. (1966) Chemical and biological studies on some saline lakes of south-east Australia. Aust. J. mar. Freshwat. Res. 17: 177–228.

    CAS  Google Scholar 

  • Beadle, L. C. (1943) An ecological survey of some inland saline waters of Algeria. J. Linn. Soc. (Zool.) 43: 218–242.

    Google Scholar 

  • Beadle, L. C. (1959) Osmotic and ionic regulation in relation to the classification of brackish and inland saline waters. Arch. Oceanogr. Limnol. (Roma), Suppl. 11: 143–151.

    Google Scholar 

  • Bednarz, T. (1981) The effect of pesticides on the growth of green and blue-green algae cultures. Acta Hydrobiol. 23: 155–172.

    CAS  Google Scholar 

  • Ben-Amotz, A. (1975) Adaptation of the unicellular alga Dunaliella parva to a saline environment. J. Phycol. 11: 50–54.

    CAS  Google Scholar 

  • Ben-Amotz, A. & Avron, M. (1972) Photosynthetic activities of the halophilic alga Dunaliella parva. Plant. Physiol. 49: 240–243.

    PubMed  CAS  Google Scholar 

  • Ben-Amotz, A. & Avron, M. (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51: 875–878.

    PubMed  CAS  Google Scholar 

  • Ben-Amotz, A. & Avron, M. (1980) Osmoregulation in the halophilic algae Dunaliella and Asteromonas. In: Rains, D. W. and Valentine, R. C. (eds.), Genetic engineering of osmoregulation. Plenum Press, New York, pp. 91–99.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M. (1980) Glycerol, ß-carotene and dry algal meal production by commercial cultivation of Dunaliella. In: Shelef, G. & Soeder, C. J. (eds.), Algal biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 603– 610.

    Google Scholar 

  • Billingham, J. (ed.) (1981) Life in the universe. MIT Press, Cambridge, Mass, 461 pp.

    Google Scholar 

  • Bisson, M. A. & Kirst, G. O. (1980a) Lamprothamnium ,a euryhaline charophyte. I. Osmotic relations and membrane potential at steady state. J. exp. Bot. 31: 1223–1235.

    CAS  Google Scholar 

  • Bisson, M. A. & Kirst, G. O. (1980b) Lamprothamnium ,a euryhaline charophyte. II. Time course of turgor regulation. J. exp. Bot. 31: 1237–1244.

    Google Scholar 

  • Bisson, M. A. & Kirst, G. O. (1983) Osmotic adaptations of charophyte algae in the Coorong, South Australia and other Australian lakes. Hydrobiologia 105: 45–51.

    Google Scholar 

  • Blinn, D. W. & Stein, J. R. 1970 Distribution and taxonomic reappraisal of Ctenocladus (Chlorophyceae: Chaetophorales).J. Phycol.6101–105.

    Google Scholar 

  • Blinn, D. W. (1970) The influence of sodium on the development of Ctenocladus circinnatus Borzi (Chlorophyceae). Phycologia 9: 49–54.

    CAS  Google Scholar 

  • Blinn, D. W. (1971) Autecology of a filamentous alga, Ctenocladus circinnatus (Chlorophyceae), in saline environments. Can. J. Bot. 49: 735–743.

    CAS  Google Scholar 

  • Borowitzka, L. J. (1981) The microflora: adaptations to life in extreme environments. Hydrobiologia 81: 33–46.

    Google Scholar 

  • Borowitza, L. J. & Brown, A. D. (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Arch. Microbiol. 96: 37–52.

    Google Scholar 

  • Borowitza, L. J., Kessly, D. S. & Brown, A. D. (1977) The salt relations of Dunaliella. Further observations on glycerol production and its regulation. Arch. Microbiol. 113: 131–138.

    Google Scholar 

  • Bourn, W. S. (1935) Sea-water tolerance of Ruppia maritima L. Contr. Boyce Thompson Inst. 7: 240–255.

    Google Scholar 

  • Brock, M. A. (1981a) The ecology of halophytes in the south-east of South Australia. Hydrobiologia 81: 23–32.

    Google Scholar 

  • Brock, M. A. (1981b) Accumulation of proline in a submerged aquatic halophyte, Ruppia L. Oecologia 51: 217–219.

    Google Scholar 

  • Brock, M. A. (1982a) Biology of the salinity tolerant genus Ruppia L. in saline lakes in South Australia. I. Morphological variation within and between species and eco-physiology. Aquat. Bot. 13: 219–248.

    Google Scholar 

  • Brock, M. A. (1982b) Biology of the salinity tolerant genus Ruppia L. in saline lakes in South Australia. II. Population ecology and reproductive biology. Aquat. Bot. 13: 249–268.

    Google Scholar 

  • Brock, M. A. & Lane, J. A. K. (1983) The aquatic flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105: 63–76.

    Google Scholar 

  • Brock, M. L., Wiegert, R. G. & Brock, T. D. (1969) Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on microorganisms of hot springs. Ecology 50: 192–200.

    Google Scholar 

  • Brock, T. D. (1967a) Life at high temperature. Science 158: 1012–1019.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. (1967b) Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48: 566–571.

    Google Scholar 

  • Brock, T. D. (1967c) Microorganisms adapted to high temperatures. Nature 214: 882– 885.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. (1970) High temperature systems. Ann. Rev. Ecol. Syst. 1: 191–220.

    Google Scholar 

  • Brock, T. D. (1971) Bimodal distribution of pH values of thermal springs of the world. Bull. Geol. Soc. Amer. 82: 1393–1394.

    CAS  Google Scholar 

  • Brock, T. D. (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179: 480–483.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. (1975) Salinity and the ecology of Dunaliella from the Great Salt Lake. J. gen. Microbiol. 89: 285–292.

    Google Scholar 

  • Brock T. D. (1976) Halophilic-blue-green algae. Arch. Microbiol. 107: 109–111.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. (1978) Thermophilic microorganisms and life at high temperature. Springer-Verlag, New York, 465 pp.

    Google Scholar 

  • Brock, T. D. & Brock, M. L. (1966) Temperature optima for algal development in Yellowstone and Iceland hot springs. Nature 209: 733–734.

    Google Scholar 

  • Brock, T. D. & Brock, M. L. (1968) Measurement of steady-state growth rates of a thermophilic alga directly in nature. J. Bact. 95: 811–815.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. & Brock, M. L. (1970) The algae of Waimangu Cauldron (New Zealand): distribution in relation to pH. J. Phycol. 6: 371–375.

    Google Scholar 

  • Brown, A. B. (1976) Microbial water stress. Bact. Rev. 40: 803–846.

    PubMed  CAS  Google Scholar 

  • Brown, A. D. (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv. Microb. Phys. 17: 181–242.

    CAS  Google Scholar 

  • Brown, A. D. (1983) Halophilic procaryotes. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds.), Physiological plant ecology. III. Responses to the chemical and biological environments. Springer-Verlag, Berlin, pp. 137–162.

    Google Scholar 

  • Brown, A. D. & Borowitzka, L. J. (1979) Halotolerance of Dunaliella. In: Levandowsky, M. & Hunter, S. H. (eds.), Physiology and biochemistry of protozoa. Vol. 1. Academic Press, New York, pp. 139–190.

    Google Scholar 

  • Bume, R. V., Bauld, J. & DeDecker, P. (1980) Saline lake charophytes and their geological significance. J. Sed. Pet. 50: 281–293.

    Google Scholar 

  • Butcher, R. W. (1959) An introductory account of the smaller algae of British coastal waters. Fish. Invest. Minist. Agric. Fish. Food (Gr. Brit.) Series IV, Part I: 21–24.

    Google Scholar 

  • Campbell, P. J. (1978) Primary productivity of a hypersaline Antarctic lake. Aust. J. mar. Freshwat. Res. 29: 717–724.

    CAS  Google Scholar 

  • Caplan, S. R. & Ginzburq, M. (1978) Energetics and structure of halophüic microorganisms. Elsevier North-Holland Biomedical Press, Amsterdam, 672 pp.

    Google Scholar 

  • Castenholz, R. W. (1969a) The thermohilic cyanophytes of Iceland and the upper temperature limit. J. Phycol. 5: 360–368.

    Google Scholar 

  • Castenholz, R. W. (1969b) Thermophilic blue-green algae and the thermal environment. Bact. Rev. 33: 476–504.

    PubMed  CAS  Google Scholar 

  • Castenholz, R. W. (1973) Ecology of blue-green algae in hot springs. In: Carr, N. G. & Whitton, B. A. (eds.), The biology of blue-green algae. Blackwell Sci. Publ., Oxford, pp. 379–414.

    Google Scholar 

  • Castenholz, R. W. (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J. Phycol. 12: 54–68.

    CAS  Google Scholar 

  • Castenholz, R. W. (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb. Ecol. 3: 79–105.

    CAS  Google Scholar 

  • Castenholz, R. W. & Wickstrom, C. E. (1975) Thermal streams. In: Whitton, B. A. (ed.), River ecology. Univ. of California Press, Berkeley, pp. 264–285.

    Google Scholar 

  • Chapman, D. J. (1974) Taxonomic position of Cyanidium caldarium. The Porphyridiales and Goniotrichales. Nova Hedwig. 25: 673–682.

    Google Scholar 

  • Chapman, V. J. (1960) Salt marshes and salt deserts of the world. Interscience Pub., New York, 392 pp.

    Google Scholar 

  • Chernyad’ev, I. I., Terekhova, I. V. Al’bitskaya, O. N. Goronkova, O. I. & Doman, N. G. (1978) Illumination as a factor in the dynamic regulation of photosynthetic metabolism of carbon in Spirulina. Fiz. Rast 25: 815–820.

    Google Scholar 

  • Christian, J. H. B. & Waltko, J. A. (1962) Solute concentrations within cells of halophüic and non-halophilic bacteria. Biochim. biophys. Acta 65: 506– 508.

    PubMed  CAS  Google Scholar 

  • Clement, G., Giddey, C. and Menzi, R. (1967) Amino acid composition and nutritive value of the alga Spirulina maxima. J. Sci. Fd. Agric. 18: 497–501.

    CAS  Google Scholar 

  • Cloern, J. E., Cole, B. E. & Oremland, R. S. (1983) Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28: 1049–1061.

    CAS  Google Scholar 

  • Cohen, Y., Jørgensen, B. B. Padan, E. & Shilo, M. (1975a) Sulfide dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257: 489–492.

    CAS  Google Scholar 

  • Cohen, Y., Padan, E. & Shilo, M. (1975b) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J. Bacteriol. 123: 855–861.

    PubMed  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E. Goldberg, M. & Shilo, M. (1977a) Solar Lake (Sinai) 1. Physical and chemical limnology. Limnol. Oceanogr. 22: 597–608.

    CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M. (1977b) Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M. (1977c) Solar Lake (Sinai) 3. Bacterial distribution and production. Limnol. Oceanogr. 22: 621–634.

    CAS  Google Scholar 

  • Comin, F. A., Alonso, M., Lopez, P. & Comelles, M. (1983) Limnology of Gallocanta Lake, Aragon, northeastern Spain. Hydrobiologia 105: 207–221.

    CAS  Google Scholar 

  • Congdon, R. A. & McComb, A. J. (1979) Productivity of Ruppia: seasonal changes and dependence on light in an Australian estuary. Aquat. Bot. 6: 121–132.

    Google Scholar 

  • Conover ,J. T. (1964) The ecology, seasonal periodicity, and distribution of benthic plants in some Texas lagoons. Bot. Marina 7: 4–41.

    Google Scholar 

  • Craigie, J. S. & McLachlan, J. (1964) Glycerol as a photosynthetic product in Dunaliella tertiolecta Butcher. Can. J. Bot. 47: 777–778.

    Google Scholar 

  • Curl. H. Jr., Hardy, J. T. & Ellermeier, R. (1972) Spectral absorption of solar radiation in alpine snowfields. Ecology 53: 1189–1194.

    Google Scholar 

  • Czygan, F.-C. (1970) Blutregen and Blutschnee: Stickstoffmangelzellen von Haemato-coccuspluvialis und Chlamydomonas nivalis. Arch. Mikrobiol. 74: 69–76.

    PubMed  CAS  Google Scholar 

  • Dainty, J. (1979) The ionic and water relations of plants which adjust to a fluctuating saline environment. In: Jefferies, R. L. & Davy, A. J. (eds.), Ecological processes in coastal environments. Blackwell Scientific Publ, Oxford, pp. 201–209.

    Google Scholar 

  • Dana, G., Herbst, D. B., Lovejoy, C., Loeffler, B. & Otsuki, K. (1977) Limnology. In: Winkler, D. W. (ed.), An ecological study of Mono Lake, California. Inst. Ecol. Publ. 12. Univ. Calif., Davis, pp. 39–69.

    Google Scholar 

  • Davis, J. S. (1978) Biological communities of a nutrient enriched salina. Aquat. Bot. 4: 23–42.

    Google Scholar 

  • Dawson, J. B. (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195: 1075–1076.

    CAS  Google Scholar 

  • DeLuca, P. & Moretti, A. (1983) Floridosides in Cyanidium caldarium, Cyanidios-chyzon merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). J. Phycol. 19: 368–369.

    CAS  Google Scholar 

  • Devi, A. M., Subbulakshmi, G., Devi, K. M. & Venkataraman, L. V. (1981) Studies of the proteins of mass cultivated, blue-green alga (Spirulina platensis). J. Agric. Food Chem. 29: 522–525.

    PubMed  CAS  Google Scholar 

  • Dobrynin, E. G. (1978) [The intensity of photosynthesis in salt lakes of Crimea]. Inf. Byull. Biol. vnutr. vod. 37: 26–29 (in Russian; FBA translation (new series) No. 131).

    CAS  Google Scholar 

  • Doemel, W. N. & Brock, T. D. (1970) The upper temperature limit of Cyanidium caldarium. Arch. Mikrobiol. 72: 326–332.

    PubMed  CAS  Google Scholar 

  • Doemel, W. N. & Brock, T. D. (1971) The physiological ecology of Cyanidium caldarium. J. Gen. Microbiol. 67: 17–32.

    Google Scholar 

  • Doemel, W. N. & Brock, T. D. (1974) Bacterial stromatolites: origin of laminations. Science 184: 1083–1085.

    PubMed  CAS  Google Scholar 

  • Doemel, W. N. & Brock, T. D. (1977) Structure, growth and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol. 34: 433–452.

    PubMed  CAS  Google Scholar 

  • Drabløs, D. & Tollan, A. (eds.) (1980) Ecological impact of acid precipitation. SNSF, Norway, 383 pp.

    Google Scholar 

  • Durand-Chastel, H. (1980) Production and use of Spirulina in Mexico. In: Shelef, G. & Soeder, C. J. (eds.), Algae Biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 51–64.

    Google Scholar 

  • Eckstein, Y. (1970) Physicochemical limnology and geology of a meromictic pond on the Red Sea shore. Limnol. Oceanogr. 15: 363–372.

    CAS  Google Scholar 

  • Edwards, M. R., Berns, D. S., Ghiorse, W. C. & Holt, S. C. (1968) Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J. Phycol. 4: 283– 298.

    Google Scholar 

  • Edwards, M. R. & Gantt (1971) Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J. Cell. Biol. 50: 896–900.

    PubMed  CAS  Google Scholar 

  • Ehrlich, H. L. (1978) How microbes cope with heavy metals, arsenic and antimony in their environment. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 381–408.

    Google Scholar 

  • Ehrlich, P. R. et al. (1983) Long-term biological consequences of nuclear war. Science 222: 1293–1300.

    PubMed  CAS  Google Scholar 

  • Epstein, E. (1969) Mineral metabolism of halophytes. In: Robinson, I. H. (ed.), Ecological aspects of the mineral nutrition of plants. Blackwell Scientific Publ., Oxford, pp. 345–355.

    Google Scholar 

  • Eugster, H. P. & Hardie, L. A. (1975) Sedimentation in an ancient playa-lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming. Bull. Geol. Soc. Am. 86: 319–334.

    CAS  Google Scholar 

  • Eugster, H. P. & Hardie, L. A. (1978) Saline lakes. In: Lerman, A. (ed.), Lakes. Springer Verlag, New York, pp. 237–293.

    Google Scholar 

  • Eykelenburg, C. van. (1977) On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie van Leeuwenhoek 43: 89–99.

    PubMed  Google Scholar 

  • Eykelenburg, C. van. (1978) A glucan from the cell wall of the cyanobacterium Spirulina platensis. Antonie van Leeuwenhoek 44: 321–327.

    PubMed  Google Scholar 

  • Eykelenburg, C. van. (1980) Ecophysiological studies on Spirulina platensis. Effect of temperature, light intensity and nitrate concentration on growth and ultrastructure. Antonie van Leeuwenhoek 46: 113–127.

    PubMed  Google Scholar 

  • Felix, E. A. & Rushforth, S. R. (1979) The algal flora of the Great Salt Lake, Utah, U.S.A. Nova Hedwig. 31: 163–194.

    Google Scholar 

  • Fjerdingstad, Ein., Vanggaard, L., Kemp, K. & Fjerdingstad, Er. (1978) Trace elements of red snow from Spitsbergen with a comparison with red snow from East Greenland (Hudson Land). Arch. Hydrobiol. 84: 120–134.

    CAS  Google Scholar 

  • Flowers, T. J., Troke, P. F. & Yeo, A. R. (1977) The mechanism of salt tolerance in halophytes. Ann. Rev. Plant. Physiol. 28: 89–121.

    CAS  Google Scholar 

  • Fogg, G. E. (1967) Observations on the snow algae of the South Orkney Islands. Phil. Trans. Roy. Soc. London, Ser. B 252: 279–287.

    Google Scholar 

  • Fott, B. (1970) Review of E. Kol. 1968. Kryobiologie. Limnol. Oceanogr. 15: 660– 661.

    Google Scholar 

  • Fukushima, H. (1963) Studies on cryophytes in Japan. J. Yokohama Munic. Univ., Ser. C, Nat. Sci. 43: 1–146.

    Google Scholar 

  • Garells, R. M. & MacKenzie, F. T. (1967) Origin of the chemical composition of some springs and lakes. In: Stumm, W. (ed.), Equilibrium concepts in natural waters systems. Adv. Chem. Ser. no. 67, pp. 222–242.

    Google Scholar 

  • Garric, R. K. (1965) The cryoflora of the Pacific Northwest. Am. J. Bot. 52: 1–8.

    Google Scholar 

  • Gatesoupe, F.-J. & Robin, J. H. (1981) Commercial single-cell proteins either as sole food source or in formulated diets for intensive and continuous production of rotifers (Brachionus plicatilis). Aquaculture 25: 1–15.

    Google Scholar 

  • Gibbs, N. & Duffus, C. M. (1976) Natural protoplast Dunaliella as a source of protein. Appl. Environ. Microbiol. 31: 602–604.

    PubMed  CAS  Google Scholar 

  • Gibor, A. (1956) The culture of brine algae. Biol. Bull. 111: 223–229.

    Google Scholar 

  • Gimmler, H. & Schirling, R. (1978) Cation permeability of the plasmalemma of the halotolerant alga Dunaliella parva. II. Cation content and glycerol concentration of the cells as dependent upon external NaCl concentration. Z. Pflanzenphysiol. Bd. 87: 435–444.

    CAS  Google Scholar 

  • Ginzburg, M. (1969) The unusual membrane permeability of two halophilic unicellular organisms. Biochim. biophys. Acta. 173: 370–376.

    PubMed  CAS  Google Scholar 

  • Ginzburg, M., Sachs, L. & Ginzburg, B. Z. (1971) Ion metabolism in a Halobacterium. II. Ion concentrations in cells at different levels of metabolism. J. Membrane Biol. 5: 78–101.

    CAS  Google Scholar 

  • Ginzburg, M. & Ginzburg, B. Z. (1981) Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains of Dunaliella. Br. phycol. J. 16: 313–324.

    Google Scholar 

  • Gould, G. W. & Corry, J. E. L. (eds.) (1980) Microbial growth and survival in extremes of environment. Academic Press, New York, 244 pp.

    Google Scholar 

  • Haines, B. L. & Dunn, E. L. (1985) Coastal marshes. In: Chabot, B. F. & Mooney, H. A. (eds.), Physiological ecology of North American plant communities. Chapman and Hall Ltd, London. pp. 323–347.

    Google Scholar 

  • Hammer, U. T. (1978) The saline lakes of Saskatchewan. III. Chemical characterization. Int. Revue ges. Hydrobiol. 63: 311–335.

    CAS  Google Scholar 

  • Hammer, U. T. (1981)A comparative study of primary production and related factors in four saline lakes in Victoria, Australia. Int. Revue ges. Hydrobiol. 66: 701–743.

    CAS  Google Scholar 

  • Hammer, U. T. (1981) Primary production in saline lakes. Hydrobiologia 81: 47–57.

    Google Scholar 

  • Hammer, U. T., Shamess, J. & Haynes, R. C. (1983) The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105: 1–26.

    Google Scholar 

  • Harris, G. P. (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnologie 10: 1–171.

    Google Scholar 

  • Hartog, C. den (1967) Brackish water as an environment for algae. Blumea 15: 31–43.

    Google Scholar 

  • Hartog, C. den (1970) The sea-grasses of the world. North-Holland Publ. Co., Amsterdam, 275 pp.

    Google Scholar 

  • Hartog, C. den (1981) Aquatic plant communities of poikilosaline waters. Hydrobiologia 81: 15–22.

    Google Scholar 

  • Haynes, R. C. & Hammer, U. T. (1978) The saline lakes of Saskatchewan. IV. Primary production of phytoplankton in selected saline ecosystems. Int. Revue ges. Hydrobiol. 63: 337–351.

    Google Scholar 

  • Hecky, R. E. (1971) The paleolimnology of the alkaline, saline lakes on the Mt. Meru lahar. Ph.D. thesis, Duke Univ., Durham, 121 pp.

    Google Scholar 

  • Hecky, R. E. & Kilham, P. (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol. Oceanogr. 18: 53–71.

    CAS  Google Scholar 

  • Heimer, Y. M. (1973) The effects of sodium chloride, potassium chloride and glycerol on the activity of nitrate reductase of a salt-tolerant and two non-tolerant plants. Planta 113: 279–281.

    CAS  Google Scholar 

  • Heinrich, M. R. (1976) Extreme environments, mechanisms of microbial adaptation. Academic Press, New York, 362 pp.

    Google Scholar 

  • Henderson, L. J. (1913) The fitness of the environment. MacMülan Co., New York, 317 pp.

    Google Scholar 

  • Hoham, R. W. (1975a) The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia 14: 213–226.

    Google Scholar 

  • Hoham, R. W. (1975b) Optimum temperatures and temperature ranges for growth of snow algae. Arct. Alp. Res. 7: 13–24.

    Google Scholar 

  • Hoham, R. W. (1976) The effect of coniferous litter and different snow melt-waters upon the growth of two species of snow algae in axenic culture. Arct. Alp. Res. 8: 377–386.

    Google Scholar 

  • Hoham, R. W. (1980) Unicellular chlorophytes -snow algae. In: Cox, E. R. (ed), Phytoflagellates. Elsevier North-Holland, New York, pp. 61–84.

    Google Scholar 

  • Hoham, R. W. & Mullet, J. E. (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia 16: 53–68.

    Google Scholar 

  • Hoham, R. W. & Mullet, J. E. (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella. Phycologia 17: 106–107.

    Google Scholar 

  • Hoham, R. W., Roemer, S. C. & Mullet, J. E. (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 18: 55–70.

    Google Scholar 

  • Holdship, S. A. (1976) The paleolimnology of Lake Manyara: a diatom analysis of a 56 m core. Ph.D. thesis, Duke Univ., Durham, 121 pp.

    Google Scholar 

  • Hollaender, A. (ed.) (1979) The biosaline concept. Plenum Press, New York, 391 pp.

    Google Scholar 

  • Holt, S. C. & Edwards, M. R. (1972) Fine structure of the thermophilic blue-green alga Synechococcus lividis Copeland. A study of frozen-fractured-etched cells. Can. J. Microbiol. 18: 175–181.

    PubMed  CAS  Google Scholar 

  • Hook, D. D. & Crawford R. M. M. (eds.) (1978) Plant life in anaerobic environments. Ann Arbor Science Publ., Ann Arbor, Mich, 564 pp.

    Google Scholar 

  • Horikoshi, K. & Akiba, T. (1982) Alkalophilic microorganisms. Springer-Verlag, Berlin, 213 pp.

    Google Scholar 

  • Horodyski, R. J., Bloeser, B. & Vonder Haas, S. (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. J. Sed. Petrol. 47: 680– 696.

    Google Scholar 

  • Hutchinson, G. E. (1937) A contribution to the limnology of arid regions. Trans. Connecticut Acad. Sci. 33: 47–132.

    Google Scholar 

  • Hutchinson, G. E. (1967) A treatise on limnology, vol. II, Introduction to lake biology and limnoplankton. John Wiley & Sons, New York, 1115 pp.

    Google Scholar 

  • Hutchinson, G. E. (1975) A treatise on limnology, vol. Ill, Limnological botany. John Wiley & Sons, New York, 660 pp.

    Google Scholar 

  • Hutchinson, J. (1959) The families of flowering plants. II. Monocotyledons. Clarendon Press, Oxford, 792 pp.

    Google Scholar 

  • Ichikawa, S. (1981) Responses to ionizing radiation. In: Lange, O. L., Nobel, P. S., Osmond. C. B. & Ziegler, H. (eds.), Physiological plant ecology. I. Responses to the physical environment. Springer-Verlag, Berlin, pp. 199–228.

    Google Scholar 

  • Iltis, A. (1968) Tolerance de salinité de Spirulina platensis (Gom.) Geitl. (Cyanophyta) dans les mares natronées du Kanem (Tchad). Cah. O.R.S.T.O.M., Sér. Hydrobiol. 2: 119–125.

    Google Scholar 

  • Iltis, A. (1969) Phytoplancton des eaux natronées du Kanem (Tchad) 1. Les lacs permanents à Spirulines. Cah. O.R.S.T.O.M., Sér. Hydrobiol. 3: 29–43.

    Google Scholar 

  • Iltis, A. (1971) Note sur Oscillatoria (sous-genre Spirulina platensis (Nordst.) BourreUy (Cyanophyta) an Tchad. Cah. O.R.S.T.O.M., Sér. Hydrobiol. 5: 53–72.

    Google Scholar 

  • Iltis, A. (1974) Phytoplancton des eaux natronées du Kanem (Tchad). VII. Structure des peuplements. Cah. O.R.S.T.O.M. Sér. Hydrobiol. 8: 51–76.

    Google Scholar 

  • Imhoff, J. F., Sahl, H. G., Soliman, G. S. H. & Truper, H. G. (1979) The Wadi Natrun: chemical composition and microbial mass development in alkaline brines of eutrophic desert lakes. Geomicrobiol. J. 1: 219–234.

    CAS  Google Scholar 

  • Inniss, W. E. & Ingraham, J. L. (1978) Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 73–104.

    Google Scholar 

  • Jacobs, S. W. L. & Brock, M. A. (1982) A revision of the genus Ruppia (Potamoge-tonaceae) in Australia. Aquat. Bot. 14: 325–337.

    Google Scholar 

  • Jannasch, H. W. (1979) Microbial turnover of organic matter in the deep sea. BioScience 29: 228–232.

    Google Scholar 

  • Jannasch, H. W. & Wirson, C. O. (1983) Microbiology of the deep sea. In: Rowe, G. T. (ed.), Deep-sea biology. The Sea, vol. 8. John Wiley and Sons, New York, pp. 231– 259.

    Google Scholar 

  • Jefferies, R. L., Davy, A. J. & Rudmik, T. (1979) The growth strategies of coastal halophytes. In: Jefferies, R. L. & Davy, A. J. (eds.), Ecological processes in coastal environments. Blackwell Scientific Publ., Oxford, pp. 243–268.

    Google Scholar 

  • Jenkin, P. M. (1936) Reports on the Percy Sladen Expedition to some Rift Valley lakes in Kenya in 1929. VII. Summary of the ecological results with special reference to the alkaline lakes. Ann. Mag. nat. Hist, Ser 10.18: 133–181.

    Google Scholar 

  • Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L. & Bruff, B. S. (1968) Effects of salts on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.

    PubMed  CAS  Google Scholar 

  • Jones, A. G., Ewing, C. M. & Melvin, M. V. (1981) Biotechnology of solar saltfields. Hydrobiologia 82: 391–406.

    Google Scholar 

  • Jørgensen, B. B. & Cohen, Y. (1977) Solar Lake (Sinai) 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.

    Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P., Blackburn, T. H. & Cohen, Y. (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyano-bacterial mat sediment. Appl. Environ. Microbiol. 38: 46–58.

    PubMed  Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P. & Cohen, Y. (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28: 1075–1093.

    Google Scholar 

  • Kalecsinsky, A. V. (1901) Uber die Ungarischen Warmen und Heissen Kochsalzseen als Naturliche Warmeaccumulatoren, sowie uber die Herstellung von Warmen Salzseen und Warmeaccumulatoren. Z. Gewaessert 4: 226–248.

    Google Scholar 

  • Kalff, J. (1970) Arctic lake ecosystems. In: Holdgate, M. W. (ed.), Antarctic ecology. Academic Press, New York, pp. 651–663.

    Google Scholar 

  • Kao, O. H. W., Berns, D. S. & Town, W. R. (1973) The characterization of c-phycocyanin from an extremely halo-tolerant blue-green alga, Coccohloris elabens. Biochem J. 131: 39–50.

    PubMed  CAS  Google Scholar 

  • Kauss, H. (1978) Osmotic regulation in algae. In: Reinhold, L., Harborne, J. B. & Swain, T. (eds.), Progress in phytochemistry. vol. 5. Pergamon Press, Oxford, pp. 1–27.

    Google Scholar 

  • Kol, E. (1968) Kryobiologie. Biologie und Limnologie des Schnees und Eises I. Kryovegetation. In: Elster, H.-J. & Ohle, W. (eds.), Die Binnengewässer, Vol. 24, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 216 pp.

    Google Scholar 

  • Krumbein, W. E., Cohen, Y. & Shilo, M. (1977) Solar Lake (Sinai) 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22: 635–656.

    CAS  Google Scholar 

  • Kuenen, J. G. (rapporteur). (1979) Oxygen toxicity group report. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Dr. J. Bernhard, Dahlem Konferenzen, Berlin, pp. 223–241.

    Google Scholar 

  • Kushner, D. J. (1971) Life in extreme environments. In: Buvet, R. & Ponnamperuma, C. (eds.), Chemical evolution and the origin of life. North-Holland Publ. Co, pp. 485–491.

    Google Scholar 

  • Lampkin, A. J. III & Sommerfeld, M. R. (1982) Algae distribution in a small, intermittent stream receiving acid mine-drainage. J. Phycol. 18: 196–199.

    CAS  Google Scholar 

  • Langworthy, T. A. (1978) Microbial life in extreme pH values. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 279–315.

    Google Scholar 

  • Larsen, H. (1967) Biochemical aspects of extreme halophilism. Adv. Microb. Physiol. 1: 97–132.

    CAS  Google Scholar 

  • Léonard, J. & Compère, P. (1967) Spirulina platensis (Gom.) Geitl., algue bleue de grande valeur alimentaire par sa richesse en protéines. Bull. Jard. Bot. natl. Belg. 37 (Suppl.), 23 pp.

    Google Scholar 

  • Lenz, P. H. (1982) Population studies of Artemia in Mono Lake, California. Ph.D. thesis, Univ. of California, Santa Barbara, 230 pp.

    Google Scholar 

  • Lerche, W. (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch. Protistenk. 88: 236–268.

    CAS  Google Scholar 

  • Livingstone, D. A. & Melack, J. M. (1984) Some lakes of Subsaharan Africa. In: Taub, F. B. (ed.), Lake and reservoir ecosystems. Elsevier, Amsterdam, pp. 467–497.

    Google Scholar 

  • Loeblich, L. A. (1972) Studies on the brine flagellate, Dunaliella salina. Ph.D. thesis, Univ. of California, San Diego.

    Google Scholar 

  • Lovelock, J. E. & Margulis, L. (1974) Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26: 1–9.

    Google Scholar 

  • Lynn, R. & Brock, T. D. (1969) Notes on the ecology of a species of Zygogonium (Kütz) in Yellowstone National Park. J. Phycol. 5: 181–185.

    CAS  Google Scholar 

  • Masaki, R., Wada, K. & Matsubara, H. (1979) Isolation and characterization of two ferredoxin-NADP+ reductases from Spirulina platensis. J. Biochem. 86: 951–962.

    PubMed  CAS  Google Scholar 

  • Mason, D. T. (1967) Limnology of Mono Lake, California. Univ. Calif. Publ. Zool. 83: 1–102.

    Google Scholar 

  • Massjuk, N. P. (1973) [Morphology, taxonomy, ecology and geographical distribution of genus Dunaliella Téod.] Kiev, (in Russian).

    Google Scholar 

  • Matty, A. J. & Smith, P. (1978) Evaluation of a yeast, a bacterium and an alga as a protein source for rainbow trout, effect of protein level on growth, gross conversion efficiency and protein conversion efficiency. Aquaculture 14: 235–246.

    Google Scholar 

  • McCarraher, D. B. (1972) A preliminary bibliography and lake index of the inland mineral waters of the world. FAO Fisheries Circular No. 146. FAO, Rome, 33 pp.

    Google Scholar 

  • McCarraher, D. B. (1977) Nebraska’s sandhill lakes. Nebraska Game and Parks Commission, Lincoln, Nebraska, 67 pp.

    Google Scholar 

  • McCauley, R. N. (1966) The biological effects of oil pollution in a river. Limnol. Oceanogr. 11: 475–486.

    Google Scholar 

  • McMillan, C & Moseley, F. N. (1967) Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology 48: 503–506.

    Google Scholar 

  • Meeks, J. C. & Castenholz, R. W. (1971) Growth and photosynthesis in an extreme thermophile Synechococcus lividus (Cyanophyta). Arch. Mikrobiol. 78: 25–41.

    PubMed  CAS  Google Scholar 

  • Melack, J. M. (1976) Limnology and dynamics of phytoplankton in equatorial African lakes. Ph.D. thesis, Duke University, Durham, N. C., 453 pp.

    Google Scholar 

  • Melack, J. M. (1979a) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol. Oceanogr. 24: 753–760.

    Google Scholar 

  • Melack, J. M. (1979b) Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.

    Google Scholar 

  • Melack, J. M. (1981) Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • Melack, J. M. (1983) Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105: 223–230.

    Google Scholar 

  • Melack, J. M. & Kilham, P. (1974) Photosynthetic rates of phytoplankton in East African alkaüne, saline lakes. Limnol. Oceanogr. 19: 743–755.

    CAS  Google Scholar 

  • Melack, J. M., Kilham, P. & Fisher, T. R. (1982) Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52: 321–326.

    Google Scholar 

  • Melack, J. M, Lenz, P. H. & Cooper, S. D. (1985) The ecology of Mono Lake. Nat. Geogr. Soc. Res. Rep. 20: 461–470.

    Google Scholar 

  • Merola, A., Castaldo, R., DeLuca, P., Gambardella, R., Musachio, A. & Taddei, R. (1982) Revision of Cyanidium caldarium. Three species of acidophilic algae. G. Bot. ItaL 116: 189–195.

    Google Scholar 

  • Meyer, G. H., Morrow, M. B., Wyss, O., Berg, T. E. & Littlepage, J. L. (1962) Antarctica: the microbiology of an unfrozen saline pond. Science 138: 1103–1104.

    PubMed  CAS  Google Scholar 

  • Miller, D. M., Jones, J. H., Yopp, J. H., Tindall, D. R. & Schmid, W. E. (1976) Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch. Microbiol. 111: 145–149.

    PubMed  CAS  Google Scholar 

  • Morita, R. Y. (1975) Psychrophilic bacteria. Bact. Rev. 39: 144–167.

    PubMed  CAS  Google Scholar 

  • Mosser, J. L., Mosser, A. G. & Brock, T. D. (1977) Photosynthesis in the snow: the alga Chlamydomonas nivalis (Chlorophyceae). J. Phycol, 13: 22–27.

    Google Scholar 

  • Munns, R., Greenway, H. & Kirst, G. O. (1983) Halotolerant eukaryotes. In: Lange, O. L. Nobel, P. S. Osmond, C. B. & Ziegler, H. (eds.), Physiological plant ecology III. Responses to the chemical and biological environment. Springer-Verlag, Berlin, pp. 59–135.

    Google Scholar 

  • Nasim, A. & James, A. P. (1978) Life under conditions of high irradiation. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 409–439.

    Google Scholar 

  • Nemenz, H. (1970) Ionenverhältnisse und die Besidlung hyperhaliner Gewässer, besonders durch Insekten. Acta biotheoretica. 19: 148–170.

    CAS  Google Scholar 

  • Nigam, B. P., Ramanathan, P. K. & Venkataraman, L. V. (1981) Simplified production technology of blue-green alga Spirulina platensis for feed applications in India. Biotech. Lett. 3: 619–622.

    Google Scholar 

  • Nissenbaum, A. (1975) The microbiology and biogeochemistry of the Dead Sea. MicrobialEcol. 2: 139–161.

    CAS  Google Scholar 

  • Nixon, S. W. (1974) Salina systems. In: Odum, H. T., Copeland, B. J. & McMahan, E. A. (eds.), Coastal ecological systems of the United States, vol. 3. The Conservation Foundation, Washington, D.C., pp. 318–341.

    Google Scholar 

  • O’Connors, H. B. Jr., Wurster, C. F., Powers, C. D., Biggs, D. C. & Rowland, R. G. (1978) Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production. Science 201: 737–739.

    PubMed  Google Scholar 

  • Ogawa, T. & Terui, G (1971) Studies on the growth of Spirulina platensis. (2) Growth kinetics of an autotrophic culture. J. Ferment. Technol. 50: 143–149.

    Google Scholar 

  • Ogawa, T., Fujii, T. & Aiba, S. (1978) Growth yield of microalgae: reassessment of ykcal. Biotech. Bioeng. 20: 1493–1500.

    Google Scholar 

  • Ogawa, K. et al. (1979) Location of the iron-sulfur cluster in Spirulina platensis ferredoxin by X-ray analysis. J. Biochem. 81: 529–531.

    Google Scholar 

  • Oren, A. & Shilo, M. (1982) Population dynamics of Dunaliella parva in the Dead Sea. Limnol. Oceanogr. 27: 201–211.

    Google Scholar 

  • Owers-Narhi, L., Robinson, S. J., DeRoo, C. S. & Yocum, C. F. (1979) Reconstitution of cyanobacterial photophosphorylation by a latent Ca+2-ATP-ase. Biochem. Biophys. Res. Comm. 90: 1025–1031.

    PubMed  CAS  Google Scholar 

  • Padan, E. (1979) Impact of facultatively anaerobic photoautotrophic metabolism on the ecology of cyanobacteria (blue-green algae). Adv. Microbiol. Ecol. 3: 1–48.

    CAS  Google Scholar 

  • Pande, A. S., Sarkar, R. & Krishnamoorthi, K. D. (1981) Toxicity of copper sulphate to the alga Spirulina platensis and the ciliate Tetrahymena pyriformis. Indian J. Exp. Biol. 19: 500–502.

    CAS  Google Scholar 

  • Parker, B. C., Hoehn, R. C., Paterson, R. A., Craft, J. A., Lane, L. S., Stavros, R. W., Sugg, H. G., Whitehurst, J. T., Fortner, R. D. & Weand, B. L. (1977) Changes in dissolved organic matter, photosynthetic production, and microbial community composition in Lake Bonney, Southern Victorialand, Antarctica. In: Llano, G. A. (ed.), Adaptations within Antarctic ecosystems. Smithsonian Inst, Washington, D.C., pp. 873–895.

    Google Scholar 

  • Parker, P. L. & Leo, R. F. (1965) Fatty acids in blue-green algal mat communities. Science 148: 373–374.

    PubMed  CAS  Google Scholar 

  • Patrick, R. (1969) Some effects of temperature on freshwater algae. In: Krenkel, P. A. & Parker, F. L. (eds.), Biological aspects of thermal pollution. Vanderbilt Univ. Press, Term., pp. 161–185.

    Google Scholar 

  • Peary, J. & Castenholz, R. W. (1964) Temperature strains of thermophilic blue-green algae. Nature 202: 720–721.

    Google Scholar 

  • Poljakoff-Mayber, A. & Gale, J. (eds.) (1975) Plants in saline environments. Springer Verlag, New York, 213 pp.

    Google Scholar 

  • Ponnamperuma, C. (ed.) (1976) Chemical evolution of the giant planets. Academic Press, New York, 240 pp.

    Google Scholar 

  • Por, F. D. (1968) Solar Lake on the shores of the Red Sea. Nature 218: 860–861.

    Google Scholar 

  • Post, F. J. (1979) Oxygen-rich gas domes of microbial origin in the salt crust of the Great Salt Lake. Geomicrobiol. J. 2: 127–139.

    Google Scholar 

  • Post, F. J. (1981) Microbiology of the Great Salt Lake north arm. Hydrobiologia 81: 59–69.

    Google Scholar 

  • Rao, J. K. M. & Argos, P. (1981) Structural stability of halophilic proteins. Biochemistry 20: 6536–6543.

    PubMed  CAS  Google Scholar 

  • Rawson, D. S. & Moore, J. E. (1944) The saline lakes of Saskatchewan. Can. J. Res. D 22: 141–201.

    Google Scholar 

  • Reimold, R. J. & Queen, W. H. (eds.) (1974) Ecology of halophytes. Academic Press, New York, 605 pp.

    Google Scholar 

  • Remy, R., Bebee, G. & Moyse, A. (1976) Electrophoretic analysis of pigment protein complexes from Porphyridium (Rhodophyta) and Spirulina (Cyanophyta) thyla-koids. Phycologia 15: 321–327.

    CAS  Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H. & Cohen, Y. (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074.

    Google Scholar 

  • Rhodes, K. S. (1981) Oxygen sensitivity of nitrogen fixation in the cyanobacterium Anabaenopsis arnoldii. Ph.D. thesis, Univ. of Michigan, Ann Arbor, 191 pp.

    Google Scholar 

  • Riccardi, G., Sora, S. & Ciferri, O. (1981) Production of amino acids by analogresistant mutants of the cyanobacterium Spirulina platensis. J. Bact. 147: 1002– 1007.

    PubMed  CAS  Google Scholar 

  • Ridley, H. N. (1930) The dispersal of plants throughout the world. Reeve, Ashford, U.K., 744 pp.

    Google Scholar 

  • Robinson, S. J., DeRoo, C. S. & Yocum, C. F. (1982) Photosynthetic electron transfer in preparations of the cyanobacterium Spirulina platensis. Plant Physiol. 70: 154–161.

    PubMed  CAS  Google Scholar 

  • Rushforth, S. R., Brotherson, J. D. Fungladda, N. & Evenson, W. E. (1981) The effects of dissolved heavy metals on attached diatoms in the Uintah Basin of Utah, U.S.A. Hydrobiologia 83: 313–323.

    CAS  Google Scholar 

  • Satake, J. and Saijo, Y. (1974) Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnol. Oceanogr. 19: 331–338.

    CAS  Google Scholar 

  • Schopf, J. W. (1983) Earth’s earliest biosphere, its origin and evolution. Princeton Univ. Press, Princeton, N.J., 632 pp.

    Google Scholar 

  • Schulthorpe, C. D. (1967) The biology of aquatic vascular plants. Edward Arnold Publ., London, 610 pp.

    Google Scholar 

  • Sen, D. N. & Rajpurohit, K. S. (eds.) (1982) Contributions to the ecology of halophytes. Dr. W. Junk Publ., The Hague, 272 pp.

    Google Scholar 

  • Sharma, R, S. & Singh, P. K. (1981) Growth of planktonic blue-green algae in mixed cultures. Microbios Lett. 16: 75–78.

    Google Scholar 

  • Shelef, G. & Soeder, C. J. (eds.) (1980) Algae biomass, production and use. Elsevier/ North Holland Biomedical Press, Amsterdam, 852 pp.

    Google Scholar 

  • Shilo, M. (ed.) (1976) Strategies of microbial life in extreme environments. Dr. S. Bernhard, Dahlem Konferenzen, Berlin, 514 pp.

    Google Scholar 

  • Smithsonian Science Information Exchange (1980) International directory of current biosaline research projects. National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Södergren, A. & Gelin, C. (1983) Effect of PCB’s on the rate of carbon-14 uptake in phytoplankton isolates from oligotrophic and eutrophic lakes. Bull. Environm. Contam. Toxicol. 30: 191–198.

    Google Scholar 

  • Soong, P. (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef, G. & Soeder, C. J. (eds.), Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 97–113.

    Google Scholar 

  • Squires, L. E., Rushforth, S. R. & Brotherson, J. D. (1979) Algal response to a thermal effluent: study of a power station on the Provo River, Utah, U.S.A. Hydrobiologia 63: 17–32.

    Google Scholar 

  • Steinhorn, I. et al. (1979) The Dead Sea: Deepening of the mixolimnion signifies the overturn of the water column. Science 206: 55–57.

    PubMed  CAS  Google Scholar 

  • Stephens, D. W. & Gillespie, D. M. (1976) Phytoplankton production in the Great Salt Lake, Utah, and laboratory study of algae response to enrichment. Limnol. Oceanogr. 21: 74–87.

    CAS  Google Scholar 

  • Stewart, G. R. & Lee, J. A. (1974) The role of proline accumulation in halophytes. Planta 120: 279–289.

    CAS  Google Scholar 

  • Stewart, G. R., Larher, F. Ahmad, I. A. & Lee, J. A. (1979) Nitrogen metabolism and salt-tolerance in higher plant halophytes. In: Jefferies, R. L. & Davy A. J. (eds.), Ecological processes in coastal environments. Blackwell Scientific Publ., Oxford, pp. 211–227.

    Google Scholar 

  • Stewart, W. D. P. (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9: 261–268.

    CAS  Google Scholar 

  • St. John, H. & Courtney, W. D. (1924) The flora of Epsom Lake. Amer. J. Bot. 11: 100–107.

    Google Scholar 

  • Stockner, J. G. (1967) Observations of thermophilic algal communities on Mount Rainer and Yellowstone National Parks. Limnol. Oceanogr. 12: 13–17.

    Google Scholar 

  • Stockner, J. G. (1968) Algal growth and primary productivity in a thermal stream. J. Fish. Res. Bd. Can. 25: 2037–2058.

    Google Scholar 

  • Stokes, P. M., Hutchinson, T. C. & Krauter, K. (1973) Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario. Can. J. Bot. 51: 2155–2168.

    CAS  Google Scholar 

  • Szalay, A. A. & MacDonald, R. E. (1980) Genetic engineering of halotolerance in microorganisms: a summary. In: Rains, D. W., Valentine, R. C. & Hollaender, A. (eds.), Genetic engineering of osmoregulation. Plenum Press, New York, pp. 321–329.

    Google Scholar 

  • Tailing, J. F. & Tailing, I. B. (1965) The chemical composition of African lake water. Int. Revue ges. Hydrobiol. 50: 421–463.

    CAS  Google Scholar 

  • Tailing, J. F., Wood, R. B., Prosser, M. V. & Baxter, R. M. (1973) The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  • Tansey, M. R. & Brock, T. D. (1972) The upper temperature limit for eukaryotic organisms. Proc. Natl. Acad. Sci. U.S.A. 69: 2426–2428.

    PubMed  CAS  Google Scholar 

  • Tansey, M. R. & Brock, T. D. (1978) Microbial life at high temperature: ecological aspects. In: Kushner, D. J. (ed.), Microbial life in extreme environments. Academic Press, London, pp. 159–216.

    Google Scholar 

  • Taub, F. B. (1974) Closed ecological systems. Ann. Rev. Ecol. Syst. 5: 139–160.

    Google Scholar 

  • Tel-Or, E., Boussiba, S. & Richmond, A. E. (1980) Products and chemicals from Spirulina platensis. In: Shelef, G. & Soeder, C. J. (eds.), Algae biomass. Elsevier/ North Holland Biomedical Press, Amsterdam, pp. 611–618.

    Google Scholar 

  • Téodoresco, E. C. (1905) Organisation et développement du Dunaliella ,nouveau genre de Volvocacée-Polyblepharidée. Beih. Bot. Zentralblatt 18: 215–232.

    Google Scholar 

  • Thomas, W. H. (1972) Observations on snow algae in California. J. Phycol. 8: 1–9.

    Google Scholar 

  • Tilzer, M. (1972) Dynamics and productivity of phytoplankton and pelagic bacteria in high mountain lakes. Arch. Hydrobiol. 40: 201–273.

    Google Scholar 

  • Tindall, D. R., Yopp, J. H., Schmid, W. E. & Miller, D. M. (1977) Protein and amino acid composition of the obligate halophile Aphanothece halophytica (Cyanophyta). J. Phycol. 13: 127–133.

    CAS  Google Scholar 

  • Titu, H., Popovici, G., Boldor, O., Spirescu, I. & Stanca, D. (1980) The ultrastructure of hormogonial cells in blue-green alga Spirulina platensis (Nordst.) Geitl. Rev. Roum. Biol-Biol. Veget. 25: 143–150.

    Google Scholar 

  • Tominaga, H. & Fukui, F. (1981) Saline lakes at Syowa Oasis, Antarctica. Hydro-biologia 82: 375–389.

    Google Scholar 

  • Trent, J. D., Chastain, R. A. & Yayanos, A. A. (1984) Possible artefactual basis for apparent bacterial growth at 250 °C. Nature 307: 737–740.

    PubMed  CAS  Google Scholar 

  • Tuite, C. (1981) Standing crop densities and distribution of Spirulina and benthic diatoms in East African alkaline saline lakes. Freshwat. Biol. 11: 345–360.

    Google Scholar 

  • Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. & Sagan, C. (1983) Nuclear winter: global consequences of multiple nuclear explosions. Science 222: 1283– 1292.

    PubMed  CAS  Google Scholar 

  • Ueno, M. (1958) The disharmonious lakes of Japan. Verh. Intern. Verein. Limnol. 13: 217–226.

    Google Scholar 

  • Ungar, I. A. (1974) Inland halophytes of the United States. In: Reimold, R. J. & Queen, W. H. (eds.), Ecology of halophytes. Academic Press, New York, pp. 235–305.

    Google Scholar 

  • Uphof, J. C. Th. (1941) Halophytes. Bot. Rev. 7: 1–58.

    CAS  Google Scholar 

  • Vallentyne, J. R. (1963) Environmental biophysics and microbial ubiquity. Ann. N.Y. Acad. Sci. 108: 342–352.

    PubMed  CAS  Google Scholar 

  • Van Auken, O. W. & McNulty, I. B. (1973) The effect of environmental factors on the growth of a halophilic species of algae. Biol. Bull. 145: 210–222.

    Google Scholar 

  • Vareschi, E. (1978) The ecology of Lake Nakuru (Kenya). I. Abundance and feeding of the lesser flamingo. Oecologia 32: 11–35.

    Google Scholar 

  • Vareschi, E. (1979) The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger = Sarotherodon alcalicum grahami Boulenger). Oecologia 37: 321–335.

    Google Scholar 

  • Vareschi, E. (1982) The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia 55: 81–101.

    Google Scholar 

  • Vareschi, E., Melack, J. M. & Kilham, P. (1981) Saline waters. In: Symoens, J. J., Burgis, M. J. & Gaudet, J. J. (eds.), The ecology and utilization of African inland waters. UNEP, Nairobi, pp. 93–102.

    Google Scholar 

  • Vareschi, E. & Vareschi, A. (1984) The ecology of Lake Nakuru (Kenya). IV. Biomass and distribution of consumer organisms. Oecologia 61: 70–82.

    Google Scholar 

  • Vareschi, E. & Jacobs, J. (1984) The ecology of Lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia 61: 83–98.

    Google Scholar 

  • Venkataraman, L. V., Nigam, B. P. & Ramanathan, P. K. (1980) Rural oriented freshwater cultivation and production of algae in India. In: Shelef, G. & Soeder, C. J. (eds.), Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 81–95.

    Google Scholar 

  • Verhoeven, J. T. A. (1979) The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquat. Biol. 6: 197–268.

    CAS  Google Scholar 

  • Verhoeven, J. T. A. (1980a) The ecology of Ruppia -dominated communities in Western Europe. II. Synecological classification. Structure and dynamics of the macroflora and macrofauna communities. Aquat. Biol. 8: 1–85.

    Google Scholar 

  • Verhoeven, J. T. A. (1980b) The ecology of Ruppia -dominated communities in Western Europe. III. Aspects of production, consumption and decomposition. Aquat. Bot. 8: 209–253.

    CAS  Google Scholar 

  • Viala, G. (1966) L’astaxanthine chez le Chlamydomonas nivalis Wille. Compt. Rend. hebd. Séances Acad. Sci. (Paris) 263: 1383–1386.

    CAS  Google Scholar 

  • Vincenzini, M., Ferrari, F., Margheri, M. O. & Florenzano, G. (1980) Quinonoid and tocopherol levels in Spirulina platensis. Microbiologica 3: 131–136.

    CAS  Google Scholar 

  • von Knorring, O. & duBois, G. G. B. (1961) Carbonatitic lava from Fort Portal area in western Uganda. Nature 192: 1064–1065.

    Google Scholar 

  • Waisel, Y. (1972) Biology of halophytes. Academic Press, New York, 395 pp.

    Google Scholar 

  • Walker, K. F. (1973) Studies on a saline lake ecosystem. Aust. J. mar. Freshwat. Res. 24: 21–71.

    CAS  Google Scholar 

  • Walker, K. F. (1975) The seasonal phytoplankton cycles for two saline lakes in central Washington. Limnol. Oceanogr. 20: 40–53.

    Google Scholar 

  • Walter, M. R. (1972) A hot spring analog for the depositional environment of Precambrian iron formations of the Lake Superior region. Econ. Geol. 67: 965–980.

    CAS  Google Scholar 

  • Walter, M. R. (ed.) (1976) Stomatolites. Developments in Sedimentology, 20. Elsevier, Amsterdam, 790 pp.

    Google Scholar 

  • Walter, M. R., Bauld, J. & Brock, T. D. (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178: 402–405.

    PubMed  CAS  Google Scholar 

  • Walter, M. R., Golubic, S. & Priess, W. V. (1973) Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia. J.Sed. Petrol. 43: 1021–1030.

    Google Scholar 

  • Waring, G. A. (1965) Thermal springs of the United States and other countries of the world. A summary. U.S. Geol. Surv. Prof. Paper 492,383 pp.

    Google Scholar 

  • Weiss, R. L. (1983) Fine structure of the snow alga (Chlamydomonas nivalis) and associated bacteria. J. Phycol. 19: 200–204.

    Google Scholar 

  • Weiler, D., Doemel, W. & Brock, T. D. (1975) Requirements of low oxidationreduction potential for photosynthesis in a blue-green alga (Phormidium sp.). Arch. Mikrobiol. 104: 7–13.

    Google Scholar 

  • Wetzel, R. G. (1964) A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Int. Rev. ges. Hydrobiol. Hydrograph. 49: 1–61.

    Google Scholar 

  • White, R. V. (1984) Hydrolytic stability of biomolecules at high temperature and its implications for life at 250 °C. Nature 310: 430–432.

    PubMed  CAS  Google Scholar 

  • Whitton, B. A., Gale, N. L. & Wixson, B. G. (1981) Chemistry and plant ecology of zinc-rich wastes dominated by blue-green algae. Hydrobiologia 83: 331–341.

    CAS  Google Scholar 

  • Wiegert, R. G. & Fraleigh, P. C. (1972) Ecology of Yellowstone thermal effluent systems: net primary productivity and species diversity of a successional blue-green algal mat. Limnol. Oceanogr. 17: 215–228.

    CAS  Google Scholar 

  • Williams, W. D. (1981) Inland salt lakes: an introduction. Hydrobiologia 81: 1–14.

    Google Scholar 

  • Winter, K. (1979) Photosynthesis and water relationships of higher plants in a saline environment. In: Jefferies, R. L. & Davy, A. J. (eds.), Ecological processes in coastal environments. Blackwell Scientific Publ., Oxford, pp. 297–320.

    Google Scholar 

  • Wirsen, C. O. & Jannasch, H. W. (1975) Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures. Mar. Biol. 31: 201–208.

    CAS  Google Scholar 

  • Woolhouse, H. W. (1981) Toxicity and tolerance in the responses of plants to metals. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Zeigler, H. (eds.), Physiological plant ecology. III. Responses to chemical and biological environment. Springer Verlag, Berlin, pp. 245–300.

    Google Scholar 

  • Wright, S. W. & Burton, H. R. (1981) The biology of Antarctic saline lakes. Hydrobiologia 82: 319–338.

    Google Scholar 

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214–1221.

    PubMed  CAS  Google Scholar 

  • Yopp, J. H. Miller, D. M. & Tindall, D. R. (1978) Regulation of intracellular water potential in the halophilic blue-green alga Aphanothece halophytica (Chroocococcales). In: Caplan, S. R. & Ginzburg, M. (eds.), Energetics and structure of halophilic microorganisms. Elsevier/North-Holland Biomedical Press, pp. 619– 624.

    Google Scholar 

  • Zarrouk, C. (1966) Contribution a l’étude d’une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. D. S. (Appl.) thèse, Univ. Paris., 74 pp.

    Google Scholar 

  • ZoBell, C. E. (1970) Pressure effects on morphology and life processes of bacteria. In: Zimmerman, A. M. (ed.), High pressure effects on cellular processes. Academic Press, New York, pp. 85–130.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Melack, J.M. (1988). Aquatic Plants in Extreme Environments. In: Symoens, J.J. (eds) Vegetation of inland waters. Handbook of vegetation science, vol 15-1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3087-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3087-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7887-0

  • Online ISBN: 978-94-009-3087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics