Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

A review is given of work done by the author and his colleagues over the past six years concerning attempts to model the evolution of the slow-response parts of the climatic system such as the global ice mass. The dynamics of these slow-response parts must be known to determine the consequences of changed boundary conditions or external forcing on the ultimate state of the complete climatic system. It is argued that whereas the faster-response atmospheric (weather) and surface oceanic variables are amenable to the application of models that are “physically based” on the thermo-hydrodynamic equations of geophysical fluid dynamics, the observed slowness of the major variations of ice mass, deep-ocean properties and the carbon cycle demand a new inductive approach. In this new approach one seeks to discover the fundamental laws governing the complete, complex, multi-domain slow system, that is, the slow climatic attractor. The key to this inductive approach is an ever-improving paleoclimatic record. A recently developed model of this attractor governing the three global variables of total ice mass, atmospheric carbon dioxide concentration and mean deep-ocean temperature is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, A. L., 1977: ‘Long-term variation of the earth’s orbital elements.’ Celestial Mech., 15, 53–74.

    Article  Google Scholar 

  • Birchfield, G. E., and R. W. Grumbine, 1985: “Slow” physics of large continental ice sheets and underlying bedrock and its relation to the Pleistocene ice ages.’ J. Geophys. Res., 90, 11,294–11,302.

    Article  Google Scholar 

  • Bryan, K., and S. Manabe, 1988: ‘Ocean circulation in warm and cold climates.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 951–966.

    Google Scholar 

  • Dodge, R. E., R. G. Fairbanks, L. K. Benninger and F. Maurrasse, 1983: ‘Pleistocene sea levels from raised coral reefs of Haiti.’ Science, 219, 1423–1425.

    Article  Google Scholar 

  • Eriksson, E., and P. Welander, 1956: ‘On a mathematical model of the carbon cycle in nature.’ Tellus, 8, 155–175.

    Article  Google Scholar 

  • Fairbanks, R. G., and R. K. Matthews, 1978: ‘The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies.’ Quatern.Res., 10, 181–196.

    Article  Google Scholar 

  • Gates, W. L., 1976: ‘The numerical simulation of ice-age climate with a global general circulation model.’ J. Atmos. Sci., 33, 1844–1873.

    Article  Google Scholar 

  • Ghil, M., and H. LeTreut, 1981: ‘A climate model with cryodynamics and geodynamics.’ J. Geophys. Res., 86, 5262–5270.

    Article  Google Scholar 

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics, Academic Press, Orlando, 662 pp.

    Google Scholar 

  • Haken, H., 1983: Synergetics, An Introduction, 3rd ed., Springer Verlag, Heidelberg.

    Google Scholar 

  • Hays, J. D., J. Imbrie and N. J. Shackleton, 1976: ‘Variations in the earth’s orbit: Pacemaker of the ice ages.’ Science, 194, 1121–1132.

    Article  Google Scholar 

  • Imbrie, J., N. J. Shackleton, N. G. Pisias, J. J. Morley, W. L. Press, D. G. Martinson, J. D. Hays, A. Mclntyre and A. C. Mix, 1984: ‘The orbital theory of pleistocene climate: Support from a revised chronology of the marine δ18o record.’ In Milankovitch and Climate, Part 1, eds. A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman, Reidel, Dordrecht, 269–305.

    Google Scholar 

  • Manabe, S., and A. J. Broccoli, 1985: ‘The influence of continental ice sheets on the climate of an ice age.’ J. Geophys. Res., 90, 2167–2190.

    Article  Google Scholar 

  • Manabe, S., and K. Bryan, 1985: ‘C02-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications.’ J. Geophys.Res., 90, 11,689–11,707.

    Google Scholar 

  • Mitchell, J. F. B., 1988: ‘Simulation of climate change due to increased atmospheric C02.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 1009–1052.

    Google Scholar 

  • Nicolis, C., and G. Nicolis, (eds.), 1987: Irreversible Phenomena and Dynamical Systems Analysis in Geosciences. Reidel, Dordrecht, 575 pp.

    Google Scholar 

  • North, G. R., 1988: ‘Lessons from energy balance models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schlesinger, ed., Kluwer Academic Publishers, 627–652.

    Google Scholar 

  • Oerlemans, J., 1980: ‘Model experiments on the 100,000-yr glacial cycle.’ Nature, 287, 430–432.

    Article  Google Scholar 

  • Oerlemans, J., 1982: ‘Glacial cycles and ice sheet modelling.’ Clim. Change, 4, 353–374.

    Google Scholar 

  • Peltier, R., and W. Hyde, 1984: ‘A model of the ice age cycle.’ In Milankovitch and Climate, Part II, eds. A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman, Reidel, Dordrecht, 565–580.

    Google Scholar 

  • Plass, G. N., 1956: ‘The carbon dioxide theory of climatic change.’ Tellus, 8, 140–154.

    Article  Google Scholar 

  • Pollard, D., 1983: ‘A coupled climate-ice sheet model applied to thuaternary ice ages.’ J. Geophys. Res., 88, 7705–7718.

    Article  Google Scholar 

  • Ruddiman, W. F., 1985: ‘Climate studies in ocean cores.’ In Paleoclimate Analysis and Modeling, ed. A. D. Hecht, Wiley, New York, 197–257.

    Google Scholar 

  • Saltzman, B., 1983: ‘Climatic systems analysis.’ In Advances in Geophysics, 25, ed. B. Saltzman, Academic Press, New York, 173–233.

    Google Scholar 

  • Saltzman, B., 1984: ‘On the role of equilibrium atmospheric climate models in the theory of long period glacial variations.’ J. Atmos. Sci., 41, 2263–2266.

    Article  Google Scholar 

  • Saltzman, B., 1985: ‘Paleoclimatic modeling.’ In Paleoclimate Analysis and Modeling, ed. A. D. Hecht, Wiley, New York, 341–396.

    Google Scholar 

  • Saltzman, B., 1986: ‘Climatic “equilibrium” for the Quaternary.’ J. Atmos. Sci., 43, 109–110.

    Article  Google Scholar 

  • Saltzman, B., 1987a: ‘Modeling the δ180-derived record of the Quaternary climatic change with low order dynamical systems.’ In Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, eds. C. Nicolis and G. Nicolis, Reidel, Dordrecht, 355–380.

    Google Scholar 

  • Saltzman, B., 1987b: ‘Carbon dioxide and the δ180 record of late-Quaternary climatic change: A global model.’ Climate Dynamics, 1, 77–85.

    Article  Google Scholar 

  • Saltzman, B., and R. E. Moritz, 1980: ‘A time-dependent climatic feedback system involving sea-ice extent, ocean temperature, and C02.’ Tellus, 32, 93–118.

    Article  Google Scholar 

  • Saltzman, B., and A. Sutera, 1984: ‘A model of the internal feedback system involved in late Quaternary climatic variations.’ J. Atmos. Sci., 41, 736–745.

    Article  Google Scholar 

  • Saltzman, B., and A. Sutera, 1987: ‘The mid-Quaternary climatic transition as the free response of a three-variable dynamical model.’ J. Atmos. Sci., 44, 236–241.

    Article  Google Scholar 

  • Saltzman, B., A. R. Hansen and K. A. Maasch, 1984: ‘The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing.’ J. Atmos. Sci., 41, 3380–3389.

    Article  Google Scholar 

  • Shackleton, N. J., and N. G. Pisias, 1985: ‘Atmospheric carbon dioxide, orbital forcing, and climate.' In Geophys. Monogr., 32, eds. E. T. Sundquist and W. S. Broecker, American Geophysical Union, 303–317.

    Google Scholar 

  • Watts, R. G., and M. E. Hayder, 1984: ‘A two-dimensional, seasonal, energy balance climate model with continents and ice sheets: Testing the Milankovitch theory.’ Tellus, 36A, 120–131.

    Article  Google Scholar 

  • Wenk, T., and U. Siegenthaler, 1985: ‘The high latitude ocean as a control of atmospheric C02.’In Geophys. Monogr., 32, eds. E. T. Sundquist and W. S. Broecker, American Geophysical Union, 185–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Saltzman, B. (1988). Modelling the Slow Climate Attractor. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3043-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3043-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7868-9

  • Online ISBN: 978-94-009-3043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics