Skip to main content

Intensity-Modulation Characteristics of Laser Diodes

  • Chapter
Laser Diode Modulation and Noise

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 3))

Abstract

A laser diode converts electrical into optical signals. Ideally, any change in the injection current would yield an instantaneous change of the emitted optical power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Konnerth and C. Lanza: “Delay between current pulse and light emission of a Gallium Arsenide injection laser”; Appl. Phys. Lett., Vol. 4, pp. 120–121, 1 April 1964.

    Google Scholar 

  2. R. S. Tucker: “Large-signal switching transients in index-guided semiconductor lasers”; Electron. Lett., Vol. 20, pp. 802–803, Sept. 1984.

    Article  Google Scholar 

  3. R. S. Tucker: “High-speed modulation of semiconductor lasers”; J. Lightwave Techn., Vol. LT-3, pp. 1180–1192, Dec. 1985.

    Article  Google Scholar 

  4. T. Ikegami and Y. Suematsu: “Resonance-like characteristics of the direct modulation of a junction laser”; Proc. IEEE, Vol. 55, pp. 122–123, Jan. 1967.

    Article  Google Scholar 

  5. T. L. Paoli and J. E. Ripper: “Direct modulation of semiconductor lasers”; Proc. IEEE, Vol. 58, pp. 1457–1465, Oct. 1970.

    Article  Google Scholar 

  6. M. J. Adams: “Rate equations and transient phenomena in semiconductor lasers”; Opto-Electronics, Vol. 5, pp. 201–215, 1973.

    Article  Google Scholar 

  7. G. Arnold, P. Russer, and K. Petermann: “Modulation of laser diodes”, in ‘Semiconductor devices for optical communication’, H. Kressel, ed.; Springer, Berlin Heidelberg New York, 2nd. edition 1982, pp. 213–242.

    Google Scholar 

  8. P. M. Boers and M. T. Vlaardingerbroek: “Dynamic behaviour of semiconductor lasers”; Electron. Lett., Vol. 11, pp. 206–208, 15th May 1975.

    Article  Google Scholar 

  9. K. Furuya, Y. Suematsu, Y. Sakakibara, and M. Yamada: “Influence of intraband electronic relaxation on relaxation oscillation of injection lasers”; Trans. 1ECE of Japan, Vol. E-62, pp. 241–245, April 1979.

    Google Scholar 

  10. M. J. Adams: “Influence of spectral hole-burning on quaternary laser transients”; Electron. Lett., Vol. 19, pp. 627–628, 4th August 1983.

    Article  Google Scholar 

  11. J. E. Bowers: “Relation between bandwidth and resonance frequency and the determination of bandwidth limitations”; Proc. 10th IEEE Semiconductor Laser Conf., paper M-1, pp. 174–175, Kanazawa, Japan, Oct. 1986.

    Google Scholar 

  12. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik: “Universal relationship between resonant frequency and damping rate of 1.3 μm InGaAsP semiconductor lasers”; Appl. Phys. Lett., Vol. 50, pp. 653–655, 16th March 1987.

    Article  Google Scholar 

  13. R. Olshansky, P. M. Fye, J. Manning, and C. B. Su: “Effect of nonlinear gain on the bandwidth of semiconductor lasers”; Electron. Lett., Vol. 21, pp. 721–722, 28th June 1985.

    Article  Google Scholar 

  14. D. M. Fye, R. Olshansky and V. Lanzisera: “Observation of reduced modulation bandwidth and prediction of bandwidth limit for single frequency lasers”; Proc. 10th IEEE Semiconductor Laser Conf., paper M-5, pp. 182–183, Kanazawa, Japan, Oct. 1986.

    Google Scholar 

  15. C. B. Su, and V. Lanzisera: “Effect of doping on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers”; Appl. Phys. Lett., Vol. 45, pp. 1302–1304, 15th Dec. 1984.

    Article  Google Scholar 

  16. F. Stern: “Calculated spectral dependence of gain in excited GaAs”; J. Appl. Phys., Vol. 47, pp. 5382–5386, Dec. 1976.

    Article  Google Scholar 

  17. K. Y. Lau, and A. Yariv: “Ultra-high speed semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-21, pp. 121–138, Feb. 1985.

    Google Scholar 

  18. K. Uomi, T. Ohtoshi, and N. Chinone: “Ultra high oscillation frequency (≃ 50 GHz) in modulation doped multiquantum well (MD-MQW) lasers: Theoretical analysis”; Proc. 10th IEEE Int. Semiconductor Laser Conf., paper M-6, pp. 184–185, Kanazawa, Japan, Oct. 1986.

    Google Scholar 

  19. T. Yuasa, T. Yamada, K. Asakawa, and M. Ito: “Very high relaxation oscillation frequency in dry-etched short cavity GaAs/AlGaAs multiquantum well lasers”; Appl. Phys. Lett., Vol. 50, pp. 1122–1124, 27th Apr. 1987.

    Article  Google Scholar 

  20. K. Vahala and A. Yariv: “Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics”; Appl. Phys. Lett., Vol. 45, pp. 501–503, 1 Sept. 1984.

    Article  Google Scholar 

  21. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik: “Frequency response of 1.3 μm InGaAsP high speed semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-23,pp. 1410–1418, Sept. 1987.

    Google Scholar 

  22. C. B. Su, V. Lanzisera, R. Olshansky, W. Powazinik, E. Meland, J. Schlafer, and R. B. Lauer: “15 GHz direct modulation bandwidth of vapour-phase regrown 1.3 μm InGaAsP buried-heterostructure lasers under cw-operation at room temperature”; Electron. Lett., Vol. 21, pp. 577–579, 20th June 1985.

    Article  Google Scholar 

  23. K. Kamite, H. Sudo, M. Yano, H. Ishikawa, and H. Imai: “Ultrahigh speed InGaAsP/InP DFB lasers emitting at 1.3 μm wavelength”; IEEE J. Quant. Electron., Vol. QE-23, pp. 1054–1058, June 1987.

    Google Scholar 

  24. F. Furuya, Y. Suematsu, and T. Hong: “Reduction of resonance-like peak in direct modulation due to carrier diffusion in injection laser”; Appl. Opt., Vol. 17, pp. 1949–1952, 15 June 1978.

    Article  Google Scholar 

  25. N. Chinone, K. Aiki, M. Nakamura, and R. Ito: “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-14, pp. 625–631, August 1978.

    Article  Google Scholar 

  26. D. J. Channin: “Effect of gain saturation on injection laser switching”; J. Appl. Phys., Vol. 50, pp. 3858–3860, June 1979.

    Article  Google Scholar 

  27. D. Wilt, K. Y. Lau, and A. Yariv: “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser”; J. Appl. Phys., Vol. 52, pp. 4970–4974, August 1981.

    Article  Google Scholar 

  28. D. J. Channin, D. Botez, C. C. Neil, J. C. Connolly, and D. W. Bechtle: “Modulation characteristics of constricted double-heterojunction AlGaAs laser diodes”; J. Lightwave Techn., Vol. LT-1, pp. 146–161, March 1983.

    Article  Google Scholar 

  29. R. S. Tucker and D. J. Pope: “Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1179–1183, July 1983.

    Article  Google Scholar 

  30. D. J. Channin, D. Redfield, and D. Botez: “Effect of injection current confinement on modulation of CDH-LOC AlGaAs laser diodes”; Proc. 9th Int. Semiconductor Laser Conf., pp. 112–113, Rio de Janeiro, Brazil, August 1984.

    Google Scholar 

  31. T. Ikegami: “Spectrum broadening and tailing effect in directly modulated injection lasers”; Proc. 1st Europ. Conf. on Opt. Comm., pp. 111–113, London, Sept. 1975.

    Google Scholar 

  32. A. Valster, L. J. Meuleman, P. I. Kuindersma, and T. V. Dongen: “Improved high-frequency response of InGaAs: double-channel buried heterostructure lasers”; Electron. Lett., Vol. 22, pp. 16–18, 2nd Jan. 1986.

    Article  Google Scholar 

  33. H. G. Unger: “Elektromagnetische Wellen auf Leitungen”; Huthig, Heidelberg, W. Germany, 1980.

    Google Scholar 

  34. C. E. Zah, J. S. Osinski, S. G. Menocal, N. Tabatabaie, T. P. Lee, A. G. Dentai, and C. A. Burrus: “Wide-bandwidth and high-power 1.3 μm InGaAsP buried crescent lasers with semi-insulating Fe-doped InP current blocking layers”; Electron. Lett., Vol. 23, pp. 52–53, 2nd Jan. 1987.

    Article  Google Scholar 

  35. C. Su, V. Lanzisera, W. Powazinik, E. Meland, R. Olshansky, and R. B. Lauer: “12.5 GHz direct modulation bandwidth of vapor phase regrown 1.3 μm InGaAsP buried heterostructure lasers”; Appl. Phys. Lett., Vol. 46, pp. 344–346, 15 Febr. 1985.

    Article  Google Scholar 

  36. J. E. Bowers, B. R. Hemenway, D. P. Wilt, T. J. Bridges, and E. G. Burkhardt: “26.5 GHz-bandwidth InGaAsP constricted mesa lasers with tight optical confinement”; Electron. Lett., Vol. 21, pp. 1090–1091, 7th Nov. 1985.

    Article  Google Scholar 

  37. L. Figueroa, C. W. Slayman, and H.-W. Yen: “High-frequency characteristics of GaAlAs injection lasers”; IEEE J. Quant. Electron., Vol. QE-18, pp. 1718–1727, Oct. 1982.

    Article  Google Scholar 

  38. R. S. Tucker, C. Lin, C. A. Burrus, P. Besomi, and R. J. Nelson: “High-frequency small-signal modulation characteristics of short-cavity InGaAsP lasers”; Electron. Lett., Vol. 20, pp. 393–394, 10th May 1984.

    Article  Google Scholar 

  39. R. Olshansky, V. Lanzisera, C. B. Su, W. Powazinik, and R. B. Lauer: “Frequency response of an InGaAsP vapor phase regrown buried heterostructure laser with 18 GHz bandwidth”; Appl. Phys. Lett., Vol. 49, pp. 128–130, 21 July 1986.

    Article  Google Scholar 

  40. J. Schlafer, C. B. Su, W. Powazinik, and R. B. Lauer: “20 GHz bandwidth InGaAs photodetector for long-wavelength microwave optical links”; Electron. Lett., Vol. 21, pp. 469–471, 23rd May 1985.

    Google Scholar 

  41. J. E. Bowers: “Millimetre-wave response of InGaAsP lasers”; Electron. Lett., Vol. 21, pp. 1195–1197, 5th Dec. 1985.

    Article  Google Scholar 

  42. J. E. Bowers, C. A. Burrus, and R. J. McCoy: “InGaAsP pin photodetector with modulation response to millimetre wave length”; Electron. Lett., Vol. 21, pp. 812–814, 29th August 1985.

    Article  Google Scholar 

  43. K. Petermann: “Theoretical analysis of spectral modulation behaviour of semiconductor injection lasers”; Opt. and Quant. Electron., Vol. 10, pp. 233–242, 1978.

    Article  Google Scholar 

  44. P. R. Selway and A. R. Goodwin: “Effect of dc bias level on the spectrum of GaAs lasers operated with short pulses”; Electron. Lett., Vol. 12, pp. 25–26, 8th Jan. 1976.

    Article  Google Scholar 

  45. F. Mengel and V. Ostoich: “Dynamics of longitudinal and transverse modes along the junction plane in GaAlAs stripe lasers”; IEEE J. Quant. Electron., Vol. QE-13, pp. 359–361, May 1977.

    Article  Google Scholar 

  46. J. Buus and M. Danielsen: “Carrier diffusion and higher order transversal modes in spectral dynamics of the semiconductor laser”; IEEE J. Quant. Electron., Vol. QE-13, pp. 669–674, August 1977.

    Article  Google Scholar 

  47. M. Nakamura, K. Aiki, N. Chinone, R. Ito, and J. Umeda: “Longitudinal-mode behaviour of mode-stabilized AlxGa1-xAs injection lasers”; J. Appl. Phys., Vol. 49, pp. 4644–4648, Sept. 1978.

    Article  Google Scholar 

  48. M. R. Matthews and A. G. Steventon: “Spectral and transient response of low-threshold proton-isolated (GaAl)As lasers”; Electron. Lett., Vol. 14, pp. 649–651, 14th Sept. 1978.

    Article  Google Scholar 

  49. M. Danielsen and F. Mengel: “Multimode rate equation description of homogeneous spectral broadening in semiconductor lasers”; Electron. Lett., Vol. 14, pp. 505–507, 3rd August 1978.

    Article  Google Scholar 

  50. S. Tarucha and K. Otsuka: “Response of semiconductor lasers to deep sinusoidal modulation”; IEEE J. Quant. Electron., Vol. QE-17, pp. 810–816, May 1981.

    Article  Google Scholar 

  51. M. Osinski and M. J. Adams: “Computer-simulated transient evolution of 1.55 μm laser spectra”; Proc. 8th Europ. Conf. on Opt. Comm., pp. 169–173, Cannes, France, Sept. 1982.

    Google Scholar 

  52. P.-L. Liu, T. P. Lee, C. A. Burrus, I. P. Kaminow, and J.-S. Ko: “Observation of transient spectra and mode partition noise of injection lasers”; Electron. Lett., Vol. 18, pp. 904–905, 14th Oct. 1982.

    Article  Google Scholar 

  53. D. Marcuse and T. P. Lee: “On approximate analytical solutions of rate equations for studying transient spectra of injection lasers”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1397–1406, Sept. 1983.

    Article  Google Scholar 

  54. K. Y. Lau, C. Harder, and A. Yariv: “Longitudinal mode spectrum of semiconductor lasers under high-speed modulation”; IEEE J. Quant. Electron., Vol. QE-20, pp. 71–79, Jan. 1984.

    Google Scholar 

  55. G. H. B. Thompson: “Physics of semiconductor laser devices”; J. Wiley, Chichester, New York, Brisbane, Toronto, 1980, pp. 451–452.

    Google Scholar 

  56. F. Koyama, Y. Suematsu, S. Arai, and T.-E. Tawee: “1.5–1.6 μm GaInAsP/InP dynamic-single-mode (DSM) lasers with distributed Bragg reflector”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1042–1051, June 1983.

    Article  Google Scholar 

  57. Y. Suematsu, S. Arai, and F. Koyama: “Dynamic-single-mode lasers”; Optica Acta, Vol. 32, pp. 1157–1173, Sept./Oct. 1985.

    Google Scholar 

  58. T. P. Lee, C. A. Burrus, J. A. Copeland, A. D. Dentai, and D. Marcuse: “Short cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length”; IEEE J. Quant. Electron., Vol. QE-18, pp. 1101–1113, July 1982.

    Google Scholar 

  59. G. P. Agrawal: “Effect of nonlinear gain on single-frequency behaviour of semiconductor lasers”; Electron. Lett., Vol. 22, pp. 696–697, 19th June 1986.

    Article  Google Scholar 

  60. G. Arnold, P. Russer, and K. Petermann: “Modulation of laser diodes”; in Topics in Applied Physics, Vol. 39: ‘Semiconductor devices for optical communication’, ed. H. Kressel. Springer, Berlin Heidelberg New York, 2nd edition 1982, pp. 213–242.

    Google Scholar 

  61. R. Tell, S. T. Eng: “8 Gbit/s optical transmission with T. J. S. GaAlAs laser and p-i-n detection”; Electron. Lett. Vol. 16, pp. 497–498, 19th June 1980.

    Article  Google Scholar 

  62. A. H. Gnauck, J. E. Bowers, and J. C. Campbell: “8 Gb/s transmission over 30 km of optical fiber”; Electron. Lett., Vol. 22, pp. 600–602, 22nd May 1986.

    Article  Google Scholar 

  63. J. E. Bowers, C. A. Burrus: “Optoelectronic components and systems with bandwidths in excess of 26 GHz”; RCA-Review, Vol. 46, pp. 496–509, Dec. 1985.

    Google Scholar 

  64. C. Lin and J. E. Bowers: “High-speed large-signal digital modulation of a 1.3 μm InGaAsP constricted mesa laser at a simulated bit rate of 16 Gbit/s”; Electron. Lett., Vol. 21, pp. 906–908, 26th Sept. 1985.

    Article  Google Scholar 

  65. A. H. Gnauck and J. E. Bowers: “16 Gbit/s direct modulation of an InGaAsP laser”; Electron. Lett., Vol. 23, pp. 801–803, 16th July 1987.

    Article  Google Scholar 

  66. K. Nagano, M. Maeda, K. Saito, M. Tanaka, and R. Ito: “Sinusoidal modulation characteristics of buried-heterostructure lasers”; Trans. IECE of Japan, Vol. E-61, pp. 441–445, 1978.

    Google Scholar 

  67. T. Hong and Y. Suematsu: “Harmonic distortion in direct modulation of injection lasers”; Trans. IECE of Japan, Vol. E-62, pp. 142–147, March 1979.

    Google Scholar 

  68. K. Petermann and H. Storm: “Nichtlineare Verzerrungen bei der Modulation von Halbleiterlasern”; Wiss. Ber. AEG-Telefunken, Vol. 52, pp. 238–242, Dec. 1979.

    Google Scholar 

  69. H. Storm: “Rauschen und Klirren beim V-Nut-Laser”; Wiss. Ber. AEG-Telefunken, Vol. 53, pp. 23–26, Sept. 1980.

    Google Scholar 

  70. G. Großkopf and L. Kuller: “Measurement of nonlinear distortions in index- and gain-guiding GaAlAs lasers”; J. Opt. Comm., Vol. 1, pp. 15–17, 1980.

    Article  Google Scholar 

  71. K. Stubkjaer and M. Danieisen: “Nonlinearities of GaAlAs lasers — harmonic distortion”; IEEE J. Quant. Electron., Vol. QE-16, pp. 531–537, May 1980.

    Article  Google Scholar 

  72. H. P. Berger, R. Welter, A. Dill, G. Guekos and H. Melchior: “Tradeoffs between noise, distortion and fibre length for multichannel analogue TV transmission over graded-index fibres at 0.83 μm”; Electron. Lett., Vol. 17, pp. 844–845, 29th Oct. 1981.

    Article  Google Scholar 

  73. T. Hong, Y. Suematsu, S. Chung, and M. Kang: “Harmonic characteristics of laser diodes”; J. Opt. Comm., Vol. 3, pp. 42–48, June 1982.

    Article  Google Scholar 

  74. K. Y. Lau and A. Yariv: “Intermodulation distortion in a directly modulated semiconductor injection laser”; Appl. Phys. Lett., Vol. 45, pp. 1034–1036, 15th Nov. 1984.

    Article  Google Scholar 

  75. T. E. Darcie, R. S. Tucker and G. J. Sullivan: “Intermodulation and harmonic distortion in InGaAsP lasers”; Electron. Lett., Vol. 21, pp. 665–666, 1st August 1985, and Vol. 22, p. 619, 22nd May 1986.

    Article  Google Scholar 

  76. K. E. Simons: “The decibel relationship between amplifier distortion products”; Proc. IEEE, Vol. 58, pp. 1071–1086, July 1970.

    Article  Google Scholar 

  77. W. I. Way: “Large signal nonlinear distortion prediction for a single-mode laser diode under microwave intensity modulation”; J. Lightwave Techn., Vol. LT-5, pp. 305–315, March 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Petermann, K. (1988). Intensity-Modulation Characteristics of Laser Diodes. In: Laser Diode Modulation and Noise. Advances in Optoelectronics (ADOP), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2907-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2907-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1204-8

  • Online ISBN: 978-94-009-2907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics