Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 168))

Abstract

This article presents a thermodynamic approach to obtain properties of complex biological materials from the knowledge of their composition and physical state. The choice of a particular model is discussed. Examples of results on aroma containing solutions, sugar solutions and sodium chloride Ethanol-Water solution are presented to illustrate the application of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, D.S. and Prausnitz, J.M. (1975) “Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems”, AIChE J. 21(1):116.

    Article  CAS  Google Scholar 

  • Balzhiser, R.E., Samules, M.R., and Eliassen, J.D. (1972) Chemical Engineering Thermodynamics. Prentice-Hall inc., Englewood Cliffs., N.J.

    Google Scholar 

  • Benmergui, E.A., Ferro Fontan, C. and Chirife, J. (1979) “The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. I. aw prediction in single aqueous electrolyte solutions” J. Food Technol., 14:625.

    Article  CAS  Google Scholar 

  • Bromley, L.A. (1973) “Thermodynamic properties of strong electrolytes in aqueous solutions” AIChE J., 129(2): 313.

    Article  Google Scholar 

  • Chirife, J., Ferro Fontan, C. and Benmergui, E.A. (1980) “The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. IV. aw prediction in aqueous non-electrolyte solutions” J. Food Technol. 15:59.

    Article  CAS  Google Scholar 

  • Christensen, C, Sander, B., Fredenslund, A.A. and Rasmussen, P. (1983) Towards the extension of UNIFAC to mixtures with electrolytes. Fluid Phase Equil. 13:297.

    Article  CAS  Google Scholar 

  • Choudhury, G.S. (1987) Thermodynamic Modelling of Complex Aqueous Solutions. Ph.D. Thesis. University of Alberta, Edmonton.

    Google Scholar 

  • Chuang, L. and Toledo, R.T. (1976) “Predicting the water activity of multicomponent systems from water sorption isothermes of individual components” J. Food Sci. 41:922.

    Article  CAS  Google Scholar 

  • Crapiste, G.H. and Rotstein, E. (1982) “Prediction of sorp-tional equilibrium data for starch-containing foods” J. Food Sci. 47:1501.

    Article  CAS  Google Scholar 

  • Derr, E.L. and Deal, CH. (1969) “Analytical solutions of groups: Correlation of activity coefficients through structural group parameters” Inst. Chem. Eng. Symp. Ser. N°32, London 3:40

    Google Scholar 

  • Favetto, G., Chirife, J. and Bartholomai, G.B. (1981a) “A study of water activity lowering in meat during immersion-cooking in sodium chloride-glycerol solutions. I. Equilibrium considerations and diffusional analysis of solute uptake” J. Food Technol. 16:609.

    Article  CAS  Google Scholar 

  • Favetto, G., Chirife, J. and Bartholomaio, G.B. (1981b) “A study of water activity lowering in meat during immersion-cooking in sodium chloride-glycerol solutions. II. Kinetics of aw lowering and effect on some process variables” J. Food Technol. 16:621.

    Article  CAS  Google Scholar 

  • Ferro Fontan, C. and Chirife, J. (1981) “Technical note: A refinement of Ross’s equation for predicting the water activity of non-electrolyte mixtures” J. Food Technol. 16:219

    Article  CAS  Google Scholar 

  • Ferro Fontan, C, Chirife, J. and Benmergui, E.A. (1979) “The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. II. On the choice of the best aw lowering single strong electrolyte” J. Food Technol. 14:635.

    Google Scholar 

  • Ferro Fontan, C, Chirife, J. and Boquet, R. (1981) “Water activity in multicomponent non-electrolyte solutions” J. Food Technol. 26:553.

    Google Scholar 

  • Fredenslund, A.A., Jones, R.L. and Prausnitz, J.M. (1975) “Group-contribution estimation of activity coefficients in non-ideal liquid mixtures” Aiche J. 21(6):1086.

    Article  CAS  Google Scholar 

  • Horvath, A. (1985) Handbook of Aqueous Electrolyte Solutions, Ellis Horwood Ltd., Toronto.

    Google Scholar 

  • Jowitt, R., Escher, F., Hallstrom, B., Meffert, It. F. Th., Spiess, W. and Vos, G. (EDS) (1983) Physical properties of foods, Applied Sciences, London.

    Google Scholar 

  • Lebert, A and Richon, D. (1984) “Study of the influence of solute (n-alcohols and n-alkanes) chain length on their retention by purified olive oil” J. Food Sci. 49:1301.

    Article  CAS  Google Scholar 

  • Lee, N.S. (1987) A thermodynamic model for aqueous food solutions. MSc. Thesis. University of Alberta

    Google Scholar 

  • Le Maguer, M. (1981) A thermodynamic model for terpene-water solutions. In: Water Activity: Influences of food quality. L.B. Rockland and G.F. Stewart (eds.). p. 347. Academic Press, New York.

    Google Scholar 

  • Le Maguer, M. (1987) Mechanics and influence of water binding on water activity. In, Water activity: Theory and applications to food. L.B. Rockland and L.R. Beuchat. Eds. Marcel Dekker, Inc. New York and Basel, p.1–25.

    Google Scholar 

  • Loncin, M. and Merson, R.L. (1979) Food Engineering: Principles and Selected Applications. Academic Press, New York.

    Google Scholar 

  • Maurer, G. and Prausnitz, J.M. (1978) On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilibria 2:91.

    Article  CAS  Google Scholar 

  • Norrish, R.S. (1966) “An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups” J. Food Technol. 1:25.

    Article  CAS  Google Scholar 

  • Pitzer, K.S. (1973) “Thermodynamics of electrolytes. I. Theoretical basis and general equations” J. Phys. Chem. 77:268.

    Article  CAS  Google Scholar 

  • Prausnitz, J. (1977) State-of-the-art review of phase equilibria. In: Phase Equilibria and Fluid Properties in the Chemical Industry. T.S. Storvick and S.I. Sandler (eds.). p.11 ACS Symp. Ser. 60. ACS, Washington, D.C

    Chapter  Google Scholar 

  • Pranitz, J.M., Lichtenthaler, R.N. and Gomes de Azevedo (1986) Fugacities in liquid mixtures: theories of solutions. In: Molecular Thermodynamics of Fluid-phase Equilibria. 2nd ed. p. 247. Prentice-Hall Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Renon, H. and Prausniotz, J.M. (1968) “Local composition in thermodynamic excess functions for liquid mixtures” AIChE J. 14(1):135.

    Article  CAS  Google Scholar 

  • Reid, R.C., Prausnitz, J.M. and Sherwood, T.K. (1977) Fluid-phase equilibria in multicomponent systems. In: The properties of Gases and Liquids. 3rd ed. p. 288. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Roman, G.N., Urbicain, M.J. and Rotstein, RE. (1982) “Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations” J. Food Sci. 47:1484.

    Article  CAS  Google Scholar 

  • Ross, K.D. (1975) “Estimation of water activity in intermediate moisture foods” Food Technol. 29(3):26.

    CAS  Google Scholar 

  • Rotstein, E. and Cornish, A.R.H. (1978) “Prediction of the sorptional equilibrium relationship for the drying of food stuffs” AIChE J. 24:956.

    Article  CAS  Google Scholar 

  • Rüegg, M. and Blanc, B. (1981) “The water activity of honey and related sugar solutions” Lebensm.-wiss. u.-Technol. 14:1.

    Google Scholar 

  • Scott, W.J. (1957) Water relations of food spoilage microorganisms. In: Advances in Food Research.Vol. VII. E.M. Mark and G.F. Stewart (eds.). p. 83 Academic Press Inc., New York.

    Google Scholar 

  • Sloan, A.E. and Labuza, T.P. (1976) “Prediction of water activity lowering ability of food humectants at high aw” J. Food Sci. 41:532.

    Article  CAS  Google Scholar 

  • Sorrentino, F., Voilley, A. and Richon, D. (1986) “Activity coefficents of aroma compounds in model food systems” AIChE J. 32(12):1988.

    Article  CAS  Google Scholar 

  • Troller, J.A. (1979) “Food spoilage by microorganisms tolerating low-aw environment” Food Technol. (1):72.

    Google Scholar 

  • Van den Berg, C. and Bruin, S. (1981) Water activity and its estimation in food systems. In: Water activity: Influences on Food Quality. L.B. Rockland and G.F. Stewart (eds.). p. 1 Academic Press, Toronto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Le Maguer, M. (1989). Thermodynamic Properties for Water Removal Processes in Solid and Liquid Foods. In: Singh, R.P., Medina, A.G. (eds) Food Properties and Computer-Aided Engineering of Food Processing Systems. NATO ASI Series, vol 168. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2370-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2370-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7567-1

  • Online ISBN: 978-94-009-2370-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics