Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 168))

Abstract

This report outlines thermal property measurement techniques and thermal property modelling of foods. The discussion on measurement technique focuses on thermal conductivity and thermal diffusivity only. Since thermal conductivity and thermal diffusivity measurements are based on the heat transfer mechanism, measurement apparatus is specifically designed for certain materials and environmental conditions. The probe technique designed for simultaneous measurement of thermal conductivity and thermal diffusivity has been one of the most widely used because it can be easily operated, and commercially produced. A PC-based probe apparatus is presented. Published models on thermal conductivity prediction are grouped according to their appropriate food system. It is proposed in this study that the thermal conductivity model of foods be made up of its components and a structural model that accounts for the component arrangement in the system. The Keey model was found the best structural model for porous foods while the parallel-perpendicular model worked well for frozen nonporous system. This model was also appropriate for meat measured along the fibers at above freezing temperatures. The rest of nonporous foods was found best predicted with the parallel model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASHRAE. 1981. ASHRAE Handbook — 1981 Fundamentals. Am. Soc. of Heating, Refrigerating and Air-conditioning Engineers, Inc. Atlanta, GA.

    Google Scholar 

  2. Ansari, F.A. and A. Afaq. 1986. New method of measuring thermal diffusivity of spherical produce. International J. of Refrigeration 9(3): 158–160.

    Article  Google Scholar 

  3. ASTM. 1955. Standard method of test for thermal conductivity of materials by means of the guarded hot plate. ASTM Standards Part 3:1084.

    Google Scholar 

  4. Baghe-Khandan, M.S. 1978. Experimental and mathematical analysis of cooking effects on thermal conductivity of beef. Ph.D. Thesis, Purdue University.

    Google Scholar 

  5. Bartlett, L.H. 1944. A thermodynamic examination of the latent heat of food. Refrig. Eng. 47: 377.

    Google Scholar 

  6. Batchelor, G.K. and R. W. O’Brien. 1977. Thermal or electrical conduction through a granular material. Proc. Royal Society, London, A355: 313.

    Google Scholar 

  7. Batty, W. V., S.D. Probert, P.W. O’Callaghan. 1984. Apparent thermal-conductivities of high-porosity cellular insulants. Applied Energy 18(2): 117–135.

    Article  CAS  Google Scholar 

  8. Beck, J.V. 1963. Calculation of thermal diffusivity from temperature measurements. J. Heat Transfer. Trans. Am. Soc. Mech. Eng. 85(1): 181.

    CAS  Google Scholar 

  9. Behrens, E. 1968. Thermal conductivities of composite materials. J. Comp. Mater. 2(Jan): 2 and 2 (Oct.): 521.

    Article  Google Scholar 

  10. Bennett, A.H. 1963. Thermal characteristics of peaches as related to hydrocooling. Tech. Bulletin. USDA 1292.

    Google Scholar 

  11. Bennett, A.H., W.G. Chace, R.H. Cubbedge. 1964. Thermal conductivity of Valencia orange and Marsh grapefruit rind and juice vesicles. ASHRAE Trans. 70: 256–259.

    Google Scholar 

  12. Bhowmik, S. R., and K. Hayakawa. 1979. A new method for determining the apparent thermal diffusivity of thermally conductive foods. J. Food Science 44:469–474.

    Article  Google Scholar 

  13. Bilanski, W.K. and D.R. Fisher. 1976. Thermal conductivity of rapeseed. Trans. ASAE 19(4): 788–791.

    Google Scholar 

  14. Boggs, H.J. and W.L. Sibbitt. 1955. Thermal conductivity measurements of viscous liquids. Industrial Engineering Chemistry 47(2): 289–293.

    Article  CAS  Google Scholar 

  15. Brailsford, A.D. and K.G. Major. 1964. The thermal conductivity of aggregates of several phases, including porous materials. Brit. J. Appl. Phys. 15: 313–319.

    Article  Google Scholar 

  16. Bruggemann, D.A.G. 1935. Annulen der Physik 24: 636.

    Article  Google Scholar 

  17. Budiansky, B. 1970. Thermal and thermoelectric properties of isotropic composite. J. Comp. Mater. 4(July): 286.

    Article  Google Scholar 

  18. Butt, J.B. 1965. Thermal conductivity of porous catalysts. AIChE J. 11(1): 106.

    Article  CAS  Google Scholar 

  19. Carslaw, H.S. and J.G. Gaeger. 1959. Conduction of heat in solids. 2nded. Oxford at the Clarendon Press.

    Google Scholar 

  20. Chandra, S. and W.E. Muir. 1971. Thermal conductivity of spring wheat at low temperatures. Trans. ASAE 14(4): 644–646.

    Google Scholar 

  21. Chang, C. S. 1985. Thermal conductivity of grain as affected by bulk density and moisture content ASAE Paper No. 85–3531.

    Google Scholar 

  22. Chan, C.K. and C.L. Tien. 1973. Conductance of packed spheres in vacuum. J. Heat Transfer 95: 302–308.

    Article  CAS  Google Scholar 

  23. Chang, C. S., F. S. Lai, and B. S. Miller. 1980. Thermal conductivity and specific heat of grain dust. Trans. ASAE 23:1303–1312.

    Google Scholar 

  24. Charm, S. 1963. A method of experimentally evaluating heat-transfer coefficients in freezers and thermal conductivity of frozen foods. Food Technology 17:1305–1308.

    Google Scholar 

  25. Chaudhary, D.R. and R.C. Bhandari. 1968. Heat-transfer through a 3-phase porous medium. Brit. J. Appl. Physics, Ser. 2, 1: 815–817.

    Google Scholar 

  26. Chen, C.S. 1987. Relationship between water activity and freezing point depression of food systems. J. Food Science 52(2): 433.

    Article  Google Scholar 

  27. Chen, C.S. 1985. Thermodynamic analysis of the freezing and thawing of foods: Ice content and Mollier diagram. J. Food Science 5d: 1163.

    Article  Google Scholar 

  28. Cheng, S.C. and R.I. Vachon. 1969. The prediction of the thermal conductivity of two-and three-phase solid heterogeneous mixtures. Int. J. Heat Mass Transfer 12: 249–64.

    Article  CAS  Google Scholar 

  29. Cherneeva, L.I. 1956. Study of the thermal properties of foodstuffs. (Report of UNIKHI) Gostorgisdat, Moscos. 16 pp.

    Google Scholar 

  30. Chiew, Y.C. and E.D. Glandt. 1983. The effect of structure on the conductivity of a dispersion. J. Colloid and Interface Science 94(1): 90–104.

    Article  CAS  Google Scholar 

  31. Choi, Y. 1981. Effects of water content and temperature on the thermal properties of tomato juice. M.S. Thesis, Purdue Univ.

    Google Scholar 

  32. Choi, Y. 1985. Food thermal property prediction as affected by temperature and composition. Ph.D. Thesis, Purdue Univ.

    Google Scholar 

  33. Choi, Y. and M.R. Okos. 1983. Thermal properties of liquid foods-review. ASAE Paper No. 83–6516.

    Google Scholar 

  34. Clark, L.N., and R.S.T. Kingston. 1950. Equipment for the simultaneous determination of thermal conductivity and diffusivity of insulating materials using a variable state method. Austr. J. Applied Science 1: 172–187.

    Google Scholar 

  35. Cox, H.E. and D. Pearson. 1962. The Chemical Analysis of Foods, pp. 334–384. Chemical Pub. Co.

    Google Scholar 

  36. Cummings, D.A. 1981. Modeling of stress development during drying of extruded durum semolina. M.S. Thesis, Purdue University.

    Google Scholar 

  37. De Vera, A.L. Jr., and W. Strieder. 1977. Upper and lower bounds on the thermal conductivity of a random, two-phase material. J. Phys. Chem. 81(8): 1785–1790.

    Google Scholar 

  38. Dickerson, R.W. 1965. An apparatus for measurement of thermal diffusivity of foods. Food Technology 19(5): 198–204.

    Google Scholar 

  39. Dickerson, R.W. 1968. Thermal properties of foods. In: D.K. Tressler, W.B. Van Arsdel and M.J. Copley (eds.). The Freezing Preservation of Foods. 4th ed. pp. 26–51. The AVI Pub. Co., Westport, CN.

    Google Scholar 

  40. Donaldson, A.B. and R.E. Tyler. 1975. Thermal diffusivity measurements by a radial heat flow. J. Applied Physics 46(10): 4584–4589.

    Article  Google Scholar 

  41. Donea, J. 1972. Thermal conductivities based on variational principles. J. Comp. Mater. 6: 262.

    Article  Google Scholar 

  42. Eucken, A. 1932. B3. Forschungshaft no. 353. (fr. Fernandez-Martin and Montes, 1977).

    Google Scholar 

  43. Farrall, A.W., A.C. Chen, P.Y. Wang, and A.M. Dhanak. 1970. Thermal conductivity of dry milk in a packed bed. Trans. ASAE 13(3): 391–394.

    CAS  Google Scholar 

  44. Fernandez-Martin, F., and F. Montes. 1977. Thermal conductivity of creams. J. Dairy Research 44: 103–109.

    Article  Google Scholar 

  45. Fitch, A. L. 1935. A new thermal conductivity apparatus. American Physics Teacher (Am. J. Physics) 3(3): 135–136.

    Google Scholar 

  46. Fito, P. J., F. Pinaga, and V. Aranda. 1984. Thermal conductivity of porous bodies at loss pressure: Part I. J. Food Engineering 3:75–88.

    Article  Google Scholar 

  47. Fortes, M. and M.R. Okos. 1980. Changes in physical properties of corn during drying. Trans. ASAE 23(4): 1004. in Food Engineering, Wageningen, Netherlands.

    Google Scholar 

  48. Fortes, M. and M.R. Okos. 1981. Heat and mass transfer in hygroscopic capillary extruded products. AIChE J.27(2):255.

    Article  CAS  Google Scholar 

  49. Fournier, D. and S. Klarsfeld. 1974. Some recent experimental data on glass fiber insulating materials and their use for a reliable design of insulation at low temperatures. Heat transfer measurements in thermal insulation. ASTM STP 544. Am. Soc. of Testing Materials 223.

    Google Scholar 

  50. Frechette, R.J., and J.W. Zahrandik. 1968. Thermal properties of McIntosh apples. Trans. ASAE 11(1): 21–24.

    Google Scholar 

  51. Fricke, H. 1924. The electrical conductivity of a suspension of homogeneous spheroids. Physical Rev. 24: 575.

    Article  CAS  Google Scholar 

  52. Gentzler, G. L., and E. W. Schmidt. 1972. Determination of thermal conductivity values of freeze-dried evaporated milk. J. of Fd. Sci. 37(4):554–557.

    Article  Google Scholar 

  53. Haas, E., and G. Felsenstein. 1978. Methods used to the thermal properties of fruits and vegetables. Special publication No. 103. Division of Scientific Publications. The Volcani Center. Bet Dagan, Israel.

    Google Scholar 

  54. Hamilton, R. and O. Crosser. 1962. Thermal conductivity of heterogeneous two component system. Ind. Eng. Chem. Fund. 1:187.

    Article  CAS  Google Scholar 

  55. Harding, R. 1964. Heat transfer in low density cellular materials. Ind. Eng. Chem. Proc. Design Dev. 3: 117.

    Article  CAS  Google Scholar 

  56. Harper, J.C. and A.L. Tappel. 1957. Advances in Food Research. Vol. 7, pp. 171. Academic Pressn, NY.

    Google Scholar 

  57. Harriot, P. 1975. Thermal conductivity of catalyst pellets and other porous particles. Part I: Review of models and published results. Chem. Eng. J. 10(1): 65–71.

    Article  Google Scholar 

  58. Hashin, Z. and S. Shtrikmaa 1962. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Applied Physics 33: 3125.

    Article  CAS  Google Scholar 

  59. Heldman, D.D. 1974. Predicting the relationship between unfrozen water fraction and temperature during food freezing using freezing point depression. Trans. ASAE 17(1): 63–66.

    Google Scholar 

  60. Heldman, D. R., and R. P. Singh. 1981. Food Process Engineering. 2nd ed. AVI Publishing Co., Conn.

    Google Scholar 

  61. Helvey, T. C. 1954. Study on some physical properties of honey. Food Research 18:282–292.

    Google Scholar 

  62. Herminge, L. 1961. Heat transfer in porous bodies at various temperatures and moisture contents. Tappi 44(8): 570–575.

    Google Scholar 

  63. Higgs, S.J. and S.P. Swift. 1975. Investigation into the thermal conductivity of beef using the line source technique. Process Biochemistry pp. 43–45.

    Google Scholar 

  64. Hill Jr., J. E., J. D. Leitman, and J. E. Sunderland. 1967. Thermal conductivity of various meats. Food Tech. 21:1143–1148.

    Google Scholar 

  65. Hori, T. 1983. Effects of renet treatment and water content on thermal conductivity of skim milk. J. Food Science 48(5): 1492–1496.

    Article  Google Scholar 

  66. Jasansky, A. and W.K. Bilanski. 1973. Thermal conductivity of whole and ground soybeans. Trans. ASAE 16(1): 100–103.

    Google Scholar 

  67. Jason, A.C. and R.A.K. Long. 1955. The specific heat and thermal conductivity of fish muscle. Proc. International Congress Refrig. 9th Congress 2:160.

    Google Scholar 

  68. Jefferson, T.B., O.W. Witzell and W.L. Sibbitt. 1958. Thermal conductivity of graphite-silicone oil and graphite-water suspensions. Ind. Eng. Chem. 50(10): 1589.

    Article  CAS  Google Scholar 

  69. Jindal, V. K., and E. G. Murakami. 1984. Thermal properties of shredded coconut In: B. M. McKenna (ed.), Engineering and Food, Elsevier Applied Science Publishers, London and NY, 1:323–331.

    Google Scholar 

  70. Johnsson, C., and C. Skjoldebrand. 1984. Thermal properties of bread during baking. In: B.M. McKenna (ed.). Vol. 1, pp. 333–341. Elsevier Applied Science Publishers, London and NY.

    Google Scholar 

  71. Kasubuchi, I. 1984. Heat-conduction model of saturated soil and estimation of thermal-conductivity of soil solid-phase. Soil Science 138(3): 240–247.

    Article  Google Scholar 

  72. Kazarian, E.A., and C.W. Hall. 1965. Thermal properties of grain. Trans. ASAE 8(1): 33–37

    Google Scholar 

  73. Kazarian, E.A., and C.W. Hall. 1965. Thermal properties of grain. Trans. ASAE 8(1): 48.

    Google Scholar 

  74. Keey, R.B. 1972. Drying principles and practice. Pergamon Press, NY.

    Google Scholar 

  75. Kent, M., K. Christiansen, I. A. Van Haneghem, E. Holtz, M. J. Morley, P. Nesvadha, and K. P. Poulsen. 1984. Cost 90 collaborative measurements of thermal properties of foods. J. Food Eng. 3:117–150.

    Article  Google Scholar 

  76. Keppeler, R. H., and T. R. Boose. 1970. Thermal properties of frozen sucrose solutions. Trans. ASAE 13(3):335–339.

    CAS  Google Scholar 

  77. Kingery, W.D. 1960. Introduction to ceramics. J. Wiley and Sons, NY. p. 501.

    Google Scholar 

  78. Kopelman, I.J. 1966. Transient heat transfer and thermal properties in food systems. Ph.D. Thesis. Michigan State Univ.

    Google Scholar 

  79. Krupiczka, R. 1967. Analysis of thermal conductivity in granular materials. Int. Chem. Eng. 7(1): 122–144.

    Google Scholar 

  80. Kunii, D. and J.M. Smith. 1960. Heat transfer characteristics of porous rocks. AIChE J. 6:71–78.

    Article  CAS  Google Scholar 

  81. Kustermann, M., R. Scherer, and H. D. Kutzbach. 1981. Thermal conductivity and diffusivity of shelled com and grain. J. of Fd. Process Eng. 4(3): 137–153.

    Article  Google Scholar 

  82. Leidenfrost, W. 1959. Measurements of the thermal conductivity of milk. ASME Symp. on Thermophysical Properties 291–4.

    Google Scholar 

  83. Lentz, C. P. 1961. Thermal conductivity of meats, fats, gelatin gels and ice. Food Technol. 15:243.

    Google Scholar 

  84. Lerici, C.R., M. Piva and M.D. Rasa. 1983. Water activity and freezing point depression of aqueous solutions and liquid foods. J. Food Sci. 48:1667.

    Article  CAS  Google Scholar 

  85. Lewin, D.N. 1962. Plant handbook data. Food Eng. 34(3): 89–97.

    Google Scholar 

  86. Lozano, J.E., M.J. Urbican and E. Rotstein. 1979. Thermal conductivity of apples as a function of moisture content. J. Food Sci. 44(1): 198–199.

    Article  Google Scholar 

  87. Luikov, A.V., A.G. Shashkov, L.L. Vasilev and Y.E. Fraiman. 1968. Thermal conductivity of porous systems. Int. J. Heat Transfer 11:117–40.

    Article  Google Scholar 

  88. Lusk, G., M. Karel, and S. A. Goldblith. 1964. Thermal conductivity of some freeze-dried fish. Food Technol. 18(10): 1625–1628.

    Google Scholar 

  89. MacCarthy, D. A. 1985. Effect of temperature and bulk density on thermal conductivity of spray-dried whole milk powder. J. Fd. Eng. 4:249–263.

    Article  Google Scholar 

  90. Mannapperuma and Singh. (1989). A computer-aided method for the prediction of properties and freezing/thawing times of foods. J. Food Eng. In press.

    Google Scholar 

  91. Marin, M., G. M. Rios, and H. Gibert. 1985. Use of time-temperature data during fluidized bed freezing to determine frozen food properties. J. Food Process Engineering 7(4):253–264.

    Article  Google Scholar 

  92. Mattea, M., M. J. Urbicain and E. Rotstein. 1986a. Prediction of thermal conductivity of vegetable foods by the effective medium theory. J. Food Sci. 51(1): 113–115.

    Article  Google Scholar 

  93. Mattea, M., M.J. Urbicain and E. Rotstein. 1986b. Effective thermal conductivity predictions using the percolation theory, pp. 123–130. Food Engineering and Process Applications. Vol. 1. Elsevier Applied Science Pub., NY.

    Google Scholar 

  94. Maxwell, James Clerk. 1954. A treatise on electricity and magnetism. Vol. I and II. Dover Pub., Inc.

    Google Scholar 

  95. McCurry, T.A. 1968. The development of numerical techniques for determining thermal diffusivity utilizing data obtained through the use of a refined line-source method. Advance Project Report, Auburn Univ.

    Google Scholar 

  96. McCurry, T.A. 1968. The development of numerical technique for determining thermal diffusivity utilizing data obtained through the use of a refined line-source method. Advance Project Report, Auborn Univ.

    Google Scholar 

  97. Meredith, R.E. and C.W. Tobias. 1960. Journal of Applied Physics 31:1270.

    Article  Google Scholar 

  98. Meredith, R.E. and C.W. Tobias. 1961. Journal of Electrochemical Society 108:286.

    Article  CAS  Google Scholar 

  99. Miles, C.A., G. Van Beek and C.H. Veerkamp. 1983. Calculation of thermophysical properties of foods. In: R. Jowitt, F. Escher, B. Hallstrom, H.F. Th. Meffert, W.E.L. Spiess and G. Vos (eds.). Physical Properties of Foods, pp. 269–312. Applied Science Publishers, London and NY.

    Google Scholar 

  100. Miller, H.L. and J.E. Sunderland. 1963. Thermal conductivity of beef. Food Technology 17(Apr.): 490–492.

    Google Scholar 

  101. Mohsenin, N. 1980. Thermal properties of foods and agricultural materials. Gordon and Breach Science Publishers, NY. Can. J. of Tech. 31: 57–69.

    Google Scholar 

  102. Morley, M.J. 1966. Thermal conductivities of muscles, fats and bones. J. Food Technology 1:303–311.

    Article  Google Scholar 

  103. Morley, M.J. 1972. Thermal properties of meat: Tabulated data. Meat Research Institute Special Report No. 1. Meat Research Institute, Langford, Bristol BS18 7DY.

    Google Scholar 

  104. Moyne, C., S. Azizi, and A. Degiovanni. 1988. Thermal conductivity of wet porous media: Theoretical analysis and experimental measurements. Proceedings of the 6th International Drying Symposium IDS ′88, Versailles, France. Sept. 5–8, 1988.

    Google Scholar 

  105. Moyne, C, S. Azizi, and A. Degiovanni. 1988. Thermal conductivity of wet porous media: Theoretical analysis and experimental measurements. Proceedings of the 6th International Drying Symposium IDS ′88, Versilles, France. Sept. 5–8, 1988.

    Google Scholar 

  106. Moysey, E.B., J.T. Shaw and W.P. Lampman. 1977. The effect of temperature and moisture on the thermal properties of rapeseed. Trans. ASAE 20(3): 768–771.

    Google Scholar 

  107. Morita, T., and R. P. Singh. 1979. Physical and thermal properties of short-grain rough rice. Trans. ASAE 22(3):630–636.

    Google Scholar 

  108. Moysey, E. B., J. T. Shaw, and W. P. Lampman. 1977. The effect of temperature and moisture on the thermal properties of rapeseed. Trans. ASAE 20(3):768–771.

    Google Scholar 

  109. Murakami, E. G. 1980. Thermal properties of shredded coconut. M. Eng. Thesis, AIT, Bangkok, Thailand.

    Google Scholar 

  110. Murakami, E. G. 1985. Thermal and hydral stresses in kidney beans during soaking. Ph.D. Thesis, Penn. State Univ.

    Google Scholar 

  111. Murakami, E.G. and M.R. Okos. 1986. Predicting the thermal conductivity of dry porous foods. ASAE Paper No. 86-6538.

    Google Scholar 

  112. Murakami, E.G. and M.R. Okos. 1987. Heat transfer properties studies of composite foods. ASAE Paper No. 87-6541.

    Google Scholar 

  113. Murakami, E.G. and M.R. Okos. 1988. PC-based thermal property probe apparatus. ASAE Paper No. 88-6526.

    Google Scholar 

  114. Narayana, K.B., and M.V.K. Murthy. 1981. Heat and mass transfer characteristics and the evaluation of thermal properties of moist food materials. Trans. ASAE 24(3): 789–793.

    Google Scholar 

  115. Nesvadba, P. 1982. A new transient method for the measurement of temp. dependent thermal diffusivity. J. Physics D: Applied Physics 15:725–738.

    Article  CAS  Google Scholar 

  116. Nesvadba, P., and C. Eunson. 1984. Moisture and temperature dependence of thermal diffusivity of cool minces. J. Food Technol. 19(5):585–592.

    Article  Google Scholar 

  117. Nielsen, L. 1974. The thermal conductivity and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fund. 13: 17.

    Article  CAS  Google Scholar 

  118. Nix, G. H., G. W. Lowery, R. I. Vachon, and G. E. Tanger. 1967. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. In: G. B. Heller (ed.), Progress in Astronautics and Aeronautics, Academic Press, NY, 20:865–878.

    Google Scholar 

  119. Nix, G.H., R.I. Vachon, G.W. Lowery, and T.A. McCurry. 1969. The line source method: procedure and iteration scheme for combined determination of conductivity and diffusivity on thermal conductivity. In: C.Y. Ho and R.E. Taylor (eds.), Proc. Eighth Conf. on Thermal Conductivity, Plenum Press, 999–1008.

    Google Scholar 

  120. Norton, F.J. 1967. Thermal conductivity and life of polymer foams. J. Cellular Plastics 3: 23–37.

    Article  CAS  Google Scholar 

  121. Ojha, T. P., A. W. Farrall, A. M. Dhanak, and C. M. Stine. 1967. A method of determining heat transfer through powdered food products. Trans. ASAE 10(4):543–545.

    Google Scholar 

  122. Olivares, M., J. A. Guzman, and I. Solar. 1986. Thermal diffusivity of nonhomogeneous foods. J. Food Processing & Preservation 10(l):57–68.

    Article  Google Scholar 

  123. Oshita, S. 1985. Bulk thermal diffusivity measurement of grain rice by new fast method. In: R. Toei and A.S. Mujumdar (eds). Drying ′86. Hemisphere Pubs. Corp., NY, pp. 503–504.

    Google Scholar 

  124. Parker, W. J., R. J. Jenkins, C. P. Butler, and C. L. Abbot. 1961. Flash method of determining thermal diffusivity, heat capacity & thermal conductivity. J. Applied Physics 32:1679.

    Article  CAS  Google Scholar 

  125. Parker, R.E. and B.A. Stout. 1967. Thermal properties of tart cherries. Trans. ASAE 10(4): 489–491

    Google Scholar 

  126. Parker, R.E. and B.A. Stout. 1967. Thermal properties of tart cherries. Trans. ASAE 10(4): 496.

    Google Scholar 

  127. Peterson, J. and J. Hermans. 1969. The dielectric constants of nonconducting suspension. J. Comp. Mater. 3: 338.

    Article  Google Scholar 

  128. Pham, G.T. 1987. Calculation of bound water in food. J. Food Sci. 52(1): 210–212.

    Article  Google Scholar 

  129. Polley, S.L., O.P. Snyder and P. Kotnour. 1980. A compilation of thermal properties of foods. Food Technology 34(11): 76–94.

    Google Scholar 

  130. Powell, R. W. 1960. Thermal comparator in nondestructive testing. In: C. A. Hogarth and J. Blitz (eds.), Techniques of Nondestructive Testing, Butterworth’s, London, p. 175.

    Google Scholar 

  131. Progelhof, R.C. and J. Throne. 1975. Cooling of structural foam. J. Cell. Plast. 11.

    Google Scholar 

  132. Qashou, M.S., Vachon, R.I., Y.S. Touloukian. 1972. Thermal conductivity of foods. ASHRAE Transactions. 78(Part 1): 165–183.

    CAS  Google Scholar 

  133. Qashou, M., G. H. Nix, R. I. Vachou, and G. W. Lowery. 1970. Thermal conductivity values for ground beef and chuck. Food Technology 24:493–6.

    Google Scholar 

  134. Rao, M.A., Y. Bernard and J.F. Kenny. 1975. Thermal conductivity and thermal diffusivity of process variety squash and white potatoes. Trans. 18(6): 1188–1192.

    Google Scholar 

  135. Reidy, G.A. 1968. I. Methods for determining thermal conductivity and thermal diffusivity of foods. II. Values for thermal properties of foods gathered from the literature. M.S. Thesis. Michigan State Univ.

    Google Scholar 

  136. Riedel, L. 1949. Thermal conductivity measurements on sugar solutions, fruit juices and milk. Chemie-Ingenieur-Technik 21(17): 340–341.

    Article  CAS  Google Scholar 

  137. Riedel, L. 1951. The refrigeration effect required to freeze fruits and vegetables. Refrigeration Engineering 59: 670.

    Google Scholar 

  138. Riedel, L. 1956. Calorimetric investigations of the freezing of seafish. Kaltetechnik 8(12): 374–377.

    Google Scholar 

  139. Riedel, L. 1957a. Calorimetric investigations of the meat freezing process. Kaltetechnik 9(2): 38–40.

    Google Scholar 

  140. Riedel, L. 1957b. Kaltetechnik 9(11): 8–12.

    Google Scholar 

  141. Riedel, L. 1960. Kaltetechnik 12(12): 8–19.

    Google Scholar 

  142. Riedel, L. 1968. Calorimetric measurements on yeast. Kaltetechnik 20(9): 291–293.

    Google Scholar 

  143. Ross, I.J., A.W. Rudnick Jr., and J.D. Fox. 1971. Thermal diffusivity of ice cream at cryogenic temperatures. Trans. ASAE 14(1): 52.

    Google Scholar 

  144. Runge, I. 1925. Zietschrift fur Technische Physik 6:61.

    Google Scholar 

  145. Russell, H.W. 1935. Principles of heat flow in porous insulants. J. Am. Ceramic Soc. 18(1): 1–5.

    Article  CAS  Google Scholar 

  146. Saif, H. 1978. Thermal properties of cassava roots and chips. M. Eng. Thesis, AIT, Bangkok, Thailand.

    Google Scholar 

  147. Sakai, N. and A. Hosokawa. 1984. Comparison of several methods for calculating the ice content of foods. J. Food Engineering 3: 13–26.

    Article  Google Scholar 

  148. Sandall, O. C. 1966. Interactions between heat and mass transfer in freeze drying. Ph.D. Thesis, Univ. of California at Berkeley, California.

    Google Scholar 

  149. Sandall, O. C., C. J. King, and C. R. Wilke. 1967. The relationship between transport properties and rates of freeze drying of poultry meat. AIChE 13:428.

    Article  CAS  Google Scholar 

  150. Sanz, P.D., M.D. Alonso and R.H. Mascheroni. 1987. Thermophysical properties of meat products: General bibliography and experimental values. Trans. ASAE 30(1): 283.

    Google Scholar 

  151. Sastry, S.K. and A.K. Datta. 1985. Thermal properties of frozen peas, clams and ice cream. Canadian Institute Food Science and Technology J. 17(4): 242.

    Google Scholar 

  152. Scherer, R. 1979. Die Ermittlung thermophysikalischer Eigenschaften von Kornerfruchten, dargestellt am Beispiel von Mais, und die Bedeutung dieser fur die thermische Konservierung und Lagerung. Ph.D. Thesis, Stuttgart Univ., Forschungsbericht des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft, Frankfurt, Heft 38.

    Google Scholar 

  153. Schwartzberg, H.G. 1976. Effective heat capacities for the freezing and thawing of food. J. Food Sci. 41(1): 152–156.

    Article  Google Scholar 

  154. Sharma, D. K., and T. L. Thompson. 1973. Specific heat and thermal conductivity of sorghum. Trans. ASAE 16(1):114.

    Google Scholar 

  155. Short, B.E. and H.E. Staph. 1951. The energy content of foods. Ice and Refrigeration 121(5): 23.

    Google Scholar 

  156. Singh, R.K. 1984. Thermophysical properties of intermediate moisture apples. ASAE Paper No. 84-6510.

    Google Scholar 

  157. Spells, K.E. 1960. Thermal conductivity of some biological fluids. Phys. in Medicine and Biol. 5(7): 139–153.

    Article  CAS  Google Scholar 

  158. Spiegel, M.R. 1968. Schaum’s outline series, Theory and problems of: Mathematical handbook of formulas and tables. McGraw-Hill Book Co.

    Google Scholar 

  159. Sreenarayanan, V.V. and P.K. Chattopadhyay. 1986. Thermal conductivity and diffusivity of rice bran. J. Ag. Eng. Res. 34: 115–121.

    Article  Google Scholar 

  160. Suministrado, D. 1980. Some physical and thermal properties of rough rice. M. Eng. Thesis, AIT

    Google Scholar 

  161. Suter, D. A., K. K. Agrawal, and B. L. Clary. 1975. Thermal properties of peanut pods, hulls and kernels. Trans. ASAE 18(2):370–375.

    Google Scholar 

  162. Sweat, V.E. (unpublished). Thermal conductivity of food: Present state of the data. Texas Agricultural Experiment Station Journal Series.

    Google Scholar 

  163. Sweat, V.E. 1972. Effects of temperature and time postmortem on the thermal conductivity of chicken meat. Ph.D. Thesis, Purdue University.

    Google Scholar 

  164. Sweat, V.E. 1973. Experimental measurement of the thermal conductivity of a yellow cake. Thermal Conductivity Conference, 13th. Nov. 5–7, 1973. Lake Ozark, Missouri, pp. 213–216.

    Google Scholar 

  165. Sweat, V.E., C.G. Haugh and W.J. Stadelman. 1973. Thermal conductivity of chicken meat at temperatures between −75 and −20°C. J. of Food Sci. 38(1): 158–160.

    Article  Google Scholar 

  166. Sweat, V.E., L.F. Huggins. 1973. Automation of a miniature thermal conductivity probe. XIII Int Conf. on Thermal Conductivity. Nov. 5–8, 1973. Rolla, Missouri.

    Google Scholar 

  167. Sweat, V.E., C.G. Haugh. 1974. A thermal conductivity probe for small food samples. Trans, of the ASAE 17(1): 56–58.

    Google Scholar 

  168. Sweat, V.E. and C.E. Parmelee. 1978. Measurement of thermal conductivity of dairy products and margarine. J. Food Process Engineering 2: 187–197.

    Article  Google Scholar 

  169. Taylor, R. E. 1985. A description of the thermophysical properties research laboratory — TPRL 181 A. Thermophysical Properties Research Laboratory, Purdue Univ.

    Google Scholar 

  170. Topper, L. 1955. Analysis of porous thermal insulating materials. Ind. Eng. Chem. 47: 1377.

    Article  CAS  Google Scholar 

  171. Tsao, G.T. 1961. Thermal conductivity of two-phase materials. Ind. Eng. Chem. 53: 395.

    Article  Google Scholar 

  172. Tulshian, N. and F. Wheaton. 1986. Oyster (Crassostrea virginica) shell thermal conductivity: technique and determination Trans. ASAE 29(3): 626.

    Google Scholar 

  173. Van der Held, E. M. F., and F. G. Van Drunen. 1949. A method of measuring thermal conductivity of liquids. Physica 15:865.

    Article  Google Scholar 

  174. Vos, B. H. 1955. Measurements of thermal conductivity by a non-steady state method. Applied Scientific Research A5:425–438.

    Google Scholar 

  175. Wadsworth, J.I. and J.J. Spadaro. 1969. Transient temperature distribution in whole sweet potato roots during immersion heating. I. Thermal diffusivity of sweet potatoes. Food Technology 23: 219–223.

    Google Scholar 

  176. Wallapapan, K. 1983. Measurement and modelling of thermal conductivity of defatted soy flour under various extrusion texturization process. Ph.D. Thesis, Texas A&M Univ.

    Google Scholar 

  177. Wallapapan, K., V.E. Sweat, J.A. Arce, and P.F. Dahm. 1984. Thermal diffusivity and conductivity of defatted soy flour. Trans. ASAE 27(5): 1610.

    Google Scholar 

  178. Walters, R.E., and K.N. May. 1963. Thermal conductivity and density of chicken breast muscle and skin. Food Technology 1963 (June): 808–811.

    Google Scholar 

  179. Watt, B.K. and A. L. Merrill. 1975. Composition of foods: raw, processed and prepared. Agriculture Handbook No. 8, USDA (for sale by: Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402).

    Google Scholar 

  180. Watts, K.C. and W.K. Bilanski. 1973. Method for estimating the thermal diffusivity of whole soybeans. Trans ASAE 16(6): 808–811.

    Google Scholar 

  181. Watt, B.K. and A.L. Merrill. 1975. Composition of foods: raw, processed and prepared. Agricultural Handbook No. 8, USDA.

    Google Scholar 

  182. Woodside, W. 1959. Probe for thermal conductivity measurement of dry and moisture materials. ASHRAE 65:291.

    Google Scholar 

  183. Woodside, W. and J.H. Messner. 1961. Thermal conductivity of porous media. I. Unconsolidated Sands. J. Appl. Phys. 32(9): 1688–1699.

    Article  Google Scholar 

  184. Wratten, F. T., W. D. Poole, J. L. Chisness, S. Bal, and V. Ramarao. 1969. Physical and thermal properties of rough rice. Trans. ASAE 12(6):801–803.

    Google Scholar 

  185. Ziegler, G.R., and S.S.H. Rizvi. 1985. Thermal conductivity of liquid foods by the thermal comparator method. J. Food Science 50: 1458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Murakami, E.G., Okos, M.R. (1989). Measurement and Prediction of Thermal Properties of Foods. In: Singh, R.P., Medina, A.G. (eds) Food Properties and Computer-Aided Engineering of Food Processing Systems. NATO ASI Series, vol 168. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2370-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2370-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7567-1

  • Online ISBN: 978-94-009-2370-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics