Skip to main content

Relaxation, Glass Formation, Nucleation, & Rupture in Normal and “Water-Like” Liquids at Low Temperatures and/or Negative Pressures

  • Chapter
Correlations and Connectivity

Part of the book series: NATO ASI Series ((NSSE,volume 188))

Abstract

After an initial discussion of ergodicity-breaking in different types of relaxing systems we consider how relaxation can be characterized and how differences in system responses to different stresses can be interpreted in structural terms. The more general case of systems which respond similarly to different stresses is then considered, with emphasis on the temperature dependence of the relaxation time, its connection to the “ideal” glass transition, to thermodynamics, and to the topology of the potential energy hypersurface each system must explore at low temperatures. With this picture as background we turn to the conundrum presented by the behavior of supercooled water. After a brief review of power law divergences in supercooled water, we show how it is profitable—following Speedy—to study the relation of supercooled to superheated behavior. This leads us to a consideration of the spinodal boundary on liquid stability, and the existence of mechanically stable liquid states of tension. We bring reality to the discussion by presenting new experimental techniques and results which extend the existence of stretched water to pressures of −1400 bars. Based on the excellent agreement of our data with prior superheated water results and Fisher’s theory for the tensile strength of liquids, we argue that we have reached the homogeneous nucleation boundary for stretched water. Since nucleation ceases below 35°C we appear to have identified the tension maximum predicted by equation of state extrapolations, hence indirectly to have confirmed Speedy’s re-entrant spinodal conjecture which accounts for supercooled water anomalies in terms of pre-spinodal fluctuations. On this basis we identify alternative theoretical endpoints for supercooling liquids and identify a crossover between them in the case of water. Finally we consider, using molecular dynamic experiments, the consequences of “jumping” glassy systems across the spinodal. The process of rupture, and the structures produced, are analyzed, and the structures shown to be fractal in both structure and dynamics, with fractal dimensions which vary systematically with final density.

Manuscript prepared with the assistance of J. L. Green.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owen, J., Brown, M., Knight, W. D. and Kittel, C., Phys. Rev. 102, 1501 (1956); (b) Wenger, L. E., and Keesom, P. H., Phys. Rev. B13, 4053, (1976)

    Article  ADS  Google Scholar 

  2. Loidl, A., Ann. Rev. Phys. Chem. 40, 29 (1989).

    Article  ADS  Google Scholar 

  3. Satija, S. K. and Wang, C. H., Sol. State Commun. 28, 617 (1978).

    Article  ADS  Google Scholar 

  4. Setthna, J. P., Phys. Today 39, 520 (1986).

    Google Scholar 

  5. Wong, J. and Angell, C. A. Glass Structure By Spectroscopy(Marcel Dekker, NY, 1976).

    Google Scholar 

  6. Brawer, S. A., Relaxation in Viscous Liquids (Amer. Ceram. Soc. Publ., NY, 1982)

    Google Scholar 

  7. See J.N. Sherwood, Ed. The Plastically Crystalline State, (Wiley-Interscience, NY, 1979)

    Google Scholar 

  8. Adachi, K., H. Suga and Seki, S., Bull. Chem. Soc. Japan 41, 1073 (1968).

    Article  Google Scholar 

  9. Angell, C. A., in Relaxations in Complex Systems, ed. K. Ngai and G. B. Wright (National Technical Information Service/US Department of Commerce, Springfield VA 22161, 1985), p. 1.

    Google Scholar 

  10. Mezei, F., Knaak, W. and Farago, B., Phys. Rev. Lett. 58, 571 (1987).

    Article  ADS  Google Scholar 

  11. Gotze, W. in Liquids, Freezing, and Glass Formation, ed. J.-P. Hansen and D. Levesque (Les Houches 1989).

    Google Scholar 

  12. Barrat, J. L., and Klein, M., J. Chem. Phys. 92, 1294 (1990).

    Article  ADS  Google Scholar 

  13. See Ref. 5, Ch. 11.

    Google Scholar 

  14. Morgan, S. O., Trans. Electrochem. Soc. 65, 109 (1934).

    Article  Google Scholar 

  15. Jeong, Y. H., Nagel, S. R. and Bhattacharya, S., Phys. Rev. A 34, 602 (1986).

    Article  ADS  Google Scholar 

  16. Floriano, M. A. and Angell, C. A., J. Chem. Phys. 91, 2537 (1989).

    Article  ADS  Google Scholar 

  17. Stanley, H. E. and Teixeira, J., J. Chem. Phys. 73, 3034 (1980).

    Article  MathSciNet  Google Scholar 

  18. Kauzmann, W., Chem. Rev. 43, 219 (1948).

    Article  Google Scholar 

  19. Angell, C. A., in Relaxations in Complex Systems, ed. K. Ngai and G. B. Wright (National Technical Information Service/US Department of Commerce, Springfield VA 22161, 1985), p. 253.

    Google Scholar 

  20. Alba, C., Busse, L. E. and Angell, C. A., J. Chem. Phys. 92, 617 (1990).

    Article  ADS  Google Scholar 

  21. Palmer, R. J. and Stein, D. C., in Relaxations in Complex Systems, ed. K. Ngai and G. B. Wright (National Technical Information Service/US Department of Commerce, Springfield VA 22161, 1985), p. 1.

    Google Scholar 

  22. Laughlin, W. T. and Uhlmann, D. R., J. Phys. Chem. 76, 2317 (1972).

    Article  Google Scholar 

  23. Angell, C. A., J. Non-Cryst. Sol. 102, 205 (1988); (b) Angell, C. A., J. Phys. Chem. Sol. 49, 863 (1988).

    Article  ADS  Google Scholar 

  24. Torell, L. M. and Crimsditch, M., Proc. In. Phys. 37 (Springer, Heidelberg, 1989), p. 196.

    Google Scholar 

  25. Dixon, P. and Nagel, S., Phys. Rev. Lett. 65, 1108 (1990)

    Article  ADS  Google Scholar 

  26. Moynihan, C. T. et al., Ann. N. Y. Acad. Sci. 279, 15 (1976).

    Article  ADS  Google Scholar 

  27. Sherer, G. W., J. Am. Ceram. Soc. 67, 504 (1984).

    Article  Google Scholar 

  28. Hodge, I. M. and Berens, A. R., Macromolecules 15, 672 (1982).

    Article  Google Scholar 

  29. Tatsumisago, M., Halfpap, B. L., Green, J. L., Lindsay, S. M. and Angell, C. A., Phys. Rev. Lett. 64, 1549 (1990).

    Article  ADS  Google Scholar 

  30. Phillips, J. C., J. Non-Cryst. Sol. 34, 153 (1979).

    Article  ADS  Google Scholar 

  31. Thorpe, M. F., J. Non-Cryst. Sol. 57, 355 (1983). (b) Phillips, J. C. and Thorpe, F. M., Solid State Commun. 53, 699 (1985).

    Article  ADS  Google Scholar 

  32. Gibbs, J.H. in Modern Aspects of the Vitreous State, ed. J.D. McKenzie (Butterworths, London, 1960), Chap. 7 (b) Adam, G. and Gibbs, J.H. J. Chem. Phys. 43, 139 (1965)

    Google Scholar 

  33. Angell, C. A., International Congress on Glass, Collected JJ Papers, Indian Ceramic Society Pub. II, 161 (1986); (b) Angell, C. A., J. Non-Cryst. Sol. 1024, 205 (1988).

    Google Scholar 

  34. G. W. Scherer, Relaxation in Glass and Composites, (Wiley-Interscience, NY, 1986).

    Google Scholar 

  35. Moynihan, C. T., J. Non-Cryst. Sol. (Proc. Intern Meeting on Relaxation in Complex Systems, Crete, 1990) in press.

    Google Scholar 

  36. Speedy, R. J. and Angell, C. A., J. Chem. Phys. 65, 851 (1976).

    Article  ADS  Google Scholar 

  37. Angell, C. A., Ann. Rev. Phys. Chem. 34, 593 (1983).

    Article  ADS  Google Scholar 

  38. Mayer, E., J. Microscop. 141, 269 (1986); J. Appl. Phys. 56, 663 (1985).

    Google Scholar 

  39. Lyashenko, A. K., Goncharov, V. S., and Yastremski, P. S., Zhur. Struk. Khim. 17, 1020 (1976).

    Google Scholar 

  40. Oguni, M. and Angell, C. A., J. Chem. Phys. 73, 1948 (1980).

    Article  ADS  Google Scholar 

  41. Angell, C. A., Sichina, W. J. and Oguni, M., J. Phys. Chem. 86, 998 (1982).

    Article  Google Scholar 

  42. Speedy, R. J., J. Phys. Chem. 86, 982, (1982).

    Article  Google Scholar 

  43. Haar, L., Gallagher, J. and Kell, G. S., NBS/NRC Steam Tables (McGraw Hill, 1985).

    Google Scholar 

  44. Green, J. L., Durben, D. J., Wolf, G. H. and Angell, C. A., Science 249, 649 (1990).

    Article  ADS  Google Scholar 

  45. Zheng, Q., Durben, D., Wolf, G. H. and Angell, C. A., Phys. Rev. Lett. (submitted).

    Google Scholar 

  46. Lang, E. and Ludemann, H. D., Angewandte Chemie, Eng. Trans. 21, 315 (1982).

    Article  Google Scholar 

  47. Lang, E. Thesis, Univ. Regensburg, 1980.

    Google Scholar 

  48. Angell, C. A., Nature (News and Views Section) 331, 206 (1987).

    Article  ADS  Google Scholar 

  49. Angell, C. A., MacFarlane, D. R. and Oguni, M., Ann. N. Y. Acad. Sci. 484, 241 (1986).

    Article  ADS  Google Scholar 

  50. de Neuville, J., (private communication).

    Google Scholar 

  51. Spaepen, F. and Turnbull, D. in Laser-Solid Interactions and Laser Processing (1978), eds. S.D. Ferris, H.J. Leamy and J.M. Poate, Am. Inst. Phys. (1979), p. 73 (b) Baglay B. and Chen H.S., ibid, p. 97.

    Google Scholar 

  52. M. Grabowe, (private communication), (b) Luedtke, W.D. and Landman, U. Phys. Rev. B 40, 1164 (1989).

    Google Scholar 

  53. A. Geiger, This volume, and private communication.

    Google Scholar 

  54. Mayer, E., J. Appl. Phys. 56, 663 (1985); Cryoletters, 9, 66 (1988). (b) Johari, G. P., Hallbrucker, A. and Mayer, E., Nature 330, 552 (1987).

    Article  ADS  Google Scholar 

  55. Kieffer, J. and Angell, C. A., J. Non-Cryst. Solids 106, 336 (1988).

    Article  ADS  Google Scholar 

  56. Huffman, M., Navrotsky, A. and Pintchovski, F. S., J. Electrochem. Soc. 133, 164 (1986).

    Article  Google Scholar 

  57. Alexander, S. and Orbach, R., J. Physique Lettres 43, L–625 (1982).

    Google Scholar 

  58. Soules, D. F. and Busbey, R.F. (a) J. Chem. Phys. 78, 6307 (1983); (b) J. Non-Cryst. Sol. 49, 29 (1982).

    Article  ADS  Google Scholar 

  59. Xhonneux, P., Courtens, E, Pelous, J. and Vacher, R. Europhys. Lett. 10, 733 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Angell, C.A. (1990). Relaxation, Glass Formation, Nucleation, & Rupture in Normal and “Water-Like” Liquids at Low Temperatures and/or Negative Pressures. In: Stanley, H.E., Ostrowsky, N. (eds) Correlations and Connectivity. NATO ASI Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2157-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2157-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1011-2

  • Online ISBN: 978-94-009-2157-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics