Skip to main content

Spatial autocorrelation and sampling design in plant ecology

  • Chapter
Progress in theoretical vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 11))

Abstract

Using spatial analysis methods such as spatial autocorrelation coefficients (Moran’s I and Geary’s c) and kriging, we compare the capacity of different sampling designs and sample sizes to detect the spatial structure of a sugar-maple (Acer saccharum L.) tree density data set gathered from a secondary growth forest of southwestern Québec. Three different types of subsampling designs (random, systematic and systematic-cluster) with small sample sizes (50 and 64 points), obtained from this larger data set (200 points), are evaluated. The sensitivity of the spatial methods in the detection and the reconstruction of spatial patterns following the application of the various subsampling designs is discussed. We find that the type of sampling design plays an important role in the capacity of autocorrelation coefficients to detect significant spatial autocorrelation, and in the ability to accurately reconstruct spatial patterns by kriging. Sampling designs that contain varying sampling steps, like random and systematic-cluster designs, seem more capable of detecting spatial structures than a systematic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

UPGMA:

Unweighted Pair-Group Method using Arithmetic Averages

References

  • Boehm, B.W. 1967. Tabular representation of multivariate functions — with applications to topographic modelling. Report RM-4636-PR, Rand Corporation, Santa Monica, California.

    Google Scholar 

  • Bouchard, A., Bergeron, Y., Camiré, C, Gangloff, P. & Gariépy, M. 1985. Proposition d’une méthodologie d’inventaire et de cartographie écologique: le cas de la MRC du Haut-Saint-Laurent. Cah. Géogr. Qué. 29: 79–95.

    Google Scholar 

  • Bouchon, J. 1974. Utilization of regionalized variables in forest inventories. IUFRO and SAF Meeting, June 20–26, Syracuse, New York.

    Google Scholar 

  • Bouxin, G. & Gauthier, N. 1982. Pattern analysis in Belgian limestone grasslands. Vegetatio 49: 65–83.

    Article  Google Scholar 

  • Burrough, P.A. 1987. Spatial aspects of ecological data. In: Jongman, R.H.G., ter Braak, C.J.F. & van Tongeren, O.F.R. (eds), Data analysis in community and landscape ecology, pp. 213–251. Centre for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  • Cliff, A.D. & Ord, J.K. 1981. Spatial processes: models and applications. Pion Limited, London.

    Google Scholar 

  • Cochran, W.G. 1977. Sampling techniques, 3rd ed. John Wiley & Sons, New York.

    Google Scholar 

  • David, M. 1977. Geostatistical ore reserve estimation. Developments in Geomathematics, 2. Elsevier, Amsterdam.

    Google Scholar 

  • Fortin, M.-J. 1985. Analyse spatiale de la répartition des phénomènes écologiques: méthodes d’analyse spatiale, théorie de l’échantillonnage. Mémoire de Maîtrise ès Sciences, Université de Montréal.

    Google Scholar 

  • Geary, R.C. 1954. The contiguity ratio and statistical mapping. Incorpor. Statist. 5: 115–145.

    Article  Google Scholar 

  • Gloaguen, J.C. & Gauthier, N. 1981. Pattern development of the vegetation during colonization of a burnt heathland in Brittany (France). Vegetatio 46: 167–176.

    Article  Google Scholar 

  • Green, R.H. 1979. Sampling design and statistical methods for environmental biologists. John Wiley & Sons, New York.

    Google Scholar 

  • Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. 16: 293–316.

    Google Scholar 

  • Greig-Smith, P. 1964. Quantitative plant ecology, 2nd ed. Butterworth, London.

    Google Scholar 

  • Greig-Smith, P. 1979. Pattern in vegetation. J. Ecol. 67: 755–779.

    Article  Google Scholar 

  • Journel, A.G. & Huijbregts, C. 1978. Mining geostatistics. Academic Press, London.

    Google Scholar 

  • Jumars, P.A. 1978. Spatial autocorrelation with RUM (Remote Underwater Manipulator): vertical and horizontal structure of a bathyal community. Deep-Sea Research 25: 589–604.

    Article  Google Scholar 

  • Legendre, L. & Legendre, P. 1984. Écologie numérique. 2ième ed. Tome 2: La structure des données écologiques. Masson, Paris et les Presses de l’Université du Québec.

    Google Scholar 

  • Legendre, P. 1985. The R package for multivariate data analysis. Département de sciences biologiques, Université de Montréal.

    Google Scholar 

  • Legendre, P. & Fortin, M.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Article  Google Scholar 

  • Legendre, P. & Troussellier, M. 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055–1067.

    Article  Google Scholar 

  • Legendre, P., Troussellier, M., Jarry, V. & Fortin, M.-J. 1989. Design for simultaneous sampling of ecological variables: from concepts to numerical solutions. Oikos (in press).

    Google Scholar 

  • Marbeau, J.-P. 1976. Géostatique forestière, état actuel et développements nouveaux, pour l’aménagement en forêt tropicale. Thèse de Doctorat, École Nationale Supérieure des Mines de Paris, Centre de Géostatique et de Morphologie Mathématique, Fontainebleau.

    Google Scholar 

  • Matheron, G. 1973. The intrinsic random functions and their applications. Adv. Appl. Prob. 5: 439–468.

    Article  Google Scholar 

  • McBratney, A.B. & Webster, R. 1986. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil Sci. 37: 617–639.

    Article  Google Scholar 

  • McBratney, A.B., Webster, R. & Burgess, T.M. 1981. The design of optimal sampling schemes for local estimation and mapping of regionalized variables. I. Theory and methods. Comp. Geosci. 7: 331–334.

    Google Scholar 

  • McCall Jr., C.H. 1982. Sampling and statistics handbook for research. Iowa State Univ. Press, Ames, Iowa.

    Google Scholar 

  • Minchin, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Article  Google Scholar 

  • Mohler, C.L. 1981. Effects of sample distribution along gradients on eigenvector ordination. Vegetatio 45: 141–145.

    Article  Google Scholar 

  • Mohler, C.L. 1983. Effect of sampling pattern on estimation of species distribution along gradients. Vegetatio 54: 97–102.

    Article  Google Scholar 

  • Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    PubMed  CAS  Google Scholar 

  • Podani, J. 1984. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot. Hung. 30: 403–425.

    Google Scholar 

  • Podani, J. 1987. Computerized sampling in vegetation studies. Coenoses 2: 9–18.

    Google Scholar 

  • Oden, N.L. 1984. Assessing the significance of a spatial cor-relogram. Geogr. Anal. 16: 1–16.

    Article  Google Scholar 

  • Oliver, M.A. & Webster, R. 1986. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Anal. 18: 227–242.

    Article  Google Scholar 

  • Renshaw, E. & Ford, E.D. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.

    Google Scholar 

  • Sakai, A.K. & Oden, N.L. 1983. Spatial pattern of sex expression in silver maple (Acer saccharinum L.): Morisita’s index and spatial autocorrelation. Am. Nat. 122: 489–508.

    Article  Google Scholar 

  • Scherrer, B. 1982. Techniques de sondage en écologie. In: Frontier, S. (ed.), Stratégies d’échantillonnage en écologie. Collection d’Écologie, 17, pp. 63–162. Masson, Paris et les Presses de l’Université Laval, Québec.

    Google Scholar 

  • Scherrer, B. 1984. Biostatistique. Gaétan Morin Editeur, Chicoutimi, Québec.

    Google Scholar 

  • Sokal, R.R. 1979. Ecological parameters inferred from spatial correlograms. In: Patil, G.P. & Rosenzweig, M.L. (eds), Contemporary quantitative ecology and related ecometrics. Statistical Ecology Series, Vol. 12, pp. 167–196. Int. Co-operat. Publi. House, Fairland, M.D.

    Google Scholar 

  • Sokal, R.R. 1986. Spatial data analysis and historical processes. In: Diday, E. et al. (eds), Data analysis and informatics, IV. Proceedings of the Fourth International Symposium on Data Analysis and Informatics, pp. 29–43. Versailles, France, 1985. North-Holland, Amsterdam.

    Google Scholar 

  • Sokal, R.R. & Menozzi, P. 1982. Spatial autocorrelation of HLA frequencies in Europe support demic diffusion of early farmers. Am. Nat. 119: 1–17.

    Article  Google Scholar 

  • Sokal, R.R. & Oden, N.L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linnean Soc. 10: 199–228.

    Article  Google Scholar 

  • Sokal, R.R. & Thomson, J.D. 1987. Applications of spatial autocorrelation in ecology. In: Legendre, P. & Legendre L. (eds), Developments in numerical ecology. NATO ASI Series, Vol. G 14, pp. 431–466. Springer-Verlag, Berlin.

    Google Scholar 

  • Upton, G.J.G. & Fingleton, B. 1985. Spatial data analysis by example. Vol. 1: Point pattern and quantitative data. John Wiley & Sons, Chichester.

    Google Scholar 

  • Webster, R. & Burgess, T.M. 1984. Sampling and bulking strategies for estimating soil properties in small regions. J. Soil. Sci. 35: 127–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Grabherr L. Mucina M. B. Dale C. J. F. Ter Braak

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fortin, MJ., Drapeau, P., Legendre, P. (1990). Spatial autocorrelation and sampling design in plant ecology. In: Grabherr, G., Mucina, L., Dale, M.B., Ter Braak, C.J.F. (eds) Progress in theoretical vegetation science. Advances in vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1934-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1934-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7363-9

  • Online ISBN: 978-94-009-1934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics