Skip to main content

On sampling procedures in population and community ecology

  • Chapter
Progress in theoretical vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 11))

Abstract

In this paper we emphasize that sampling decisions in population and community ecology are context dependent. Thus, the selection of an appropriate sampling procedure should follow directly from considerations of the objectives of an investigation. We recognize eight sampling alternatives, which arise as a result of three basic dichotomies: parameter estimation versus pattern detection, univariate versus multivariate, and a discrete versus continuous sampling universe. These eight alternative sampling procedures are discussed as they relate to decisions regarding the required empirical sample size, the selection or arrangement of sampling units, and plot size and shape. Our results indicate that the decision-making process in sampling must be viewed as a flexible exercise, dictated not by generalized recommendations but by specific objectives: there is no panacea in ecological sampling. We also point to a number of unresolved sampling problems in ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkman, J. J. 1979. The investigation of vegetation texture and structure. In: Werger, M. J. A. (ed.), The study of vegetation. pp. 125–160. Junk, The Hague.

    Google Scholar 

  • Bartha, S. & Horváth, 1987. Application of long transects and information theoretical functions to pattern detection. I. Transects versus isodiametric sampling units Abstr. Bot. 11:9–26.

    Google Scholar 

  • Bigwood, D. W. & Inouye, D. W. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69: 497–507.

    Article  Google Scholar 

  • Bormann, G. E. 1953. The statistical efficiency of sample plot size and shape in forest ecology. Ecology 34: 474–487.

    Article  Google Scholar 

  • Bourdeau, P. F. 1953. A test of random versus systematic ecological sampling. Ecology 34: 499–512.

    Article  Google Scholar 

  • Bouxin, G. 1983. Multi-scaled pattern analysis: an example with savanna vegetation and a proposal for a sampling design. Vegetatio 52: 161–169.

    Article  Google Scholar 

  • Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Aufl. Springer, Wien.

    Google Scholar 

  • Carpenter, S. R. & Chaney, J. E. 1983. Scale of spatial pattern: four methods compared. Vegetatio 53: 153–160.

    Google Scholar 

  • Castro, I., Sterling, A. & Galiano, E. F. 1986. Multi-species pattern analysis of Mediterranean pastures in three stages of ecological succession. Vegetatio 68: 37–42.

    Google Scholar 

  • Clapham, A. R. 1932. The form of the observational unit in quantitative ecology. J. Ecol. 20: 192–197.

    Article  Google Scholar 

  • Clark, P. J. & Evans, F. C. 1954. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35: 445–453.

    Article  Google Scholar 

  • Cochran, W. G. 1977. Sampling techniques. 3rd ed. J. Wiley & Sons, New York.

    Google Scholar 

  • Cox, T. F. & Lewis, T. 1976. A conditioned distance ratio method for analyzing spatial patterns. Biometrika 63: 483–491.

    Article  Google Scholar 

  • Croy, C. D. & Dix, R. L. 1984. Notes on sample size requirements in morphological plant ecology. Ecology 65: 662–666.

    Article  Google Scholar 

  • De Vries, P. G. 1986. Sampling theory for forest inventory. Springer, Berlin.

    Google Scholar 

  • Dietvorst, P., van der Maarel, E. & van der Putten, H. 1982. A new approach to the minimal area of a plant community. Vegetatio 50: 77–91.

    Article  Google Scholar 

  • Digby, P. G. N. & Kempton, R. A. 1987. Multivariate analysis of ecological communities. Chapman & Hall, London.

    Google Scholar 

  • Diggle, P. J. 1979a. Statistical methods for spatial point patterns in ecology. In: Cormack, R. M. & Ord, J. K. (eds), Spatial and temporal analysis in ecology. pp. 95–150. Inter. Coop. Publ. House, Burtonsville, USA.

    Google Scholar 

  • Diggle, P. J. 1979b. On parameter estimation and goodness-of-fit testing for spatial point patterns. Biometrics 35: 87–101.

    Article  Google Scholar 

  • Diggle, P. J. & Matérn, B. 1980. On sampling designs for the study of point-event nearest neighbour distributions in R2. Scand. J. Statist. 7: 80–84.

    Google Scholar 

  • Diggle, P. J. & ter Braak, C. J. F. 1982. Point sampling of binary mosaics in ecology. In: Ranneby, B. (ed.), Statistics in theory and practice. Essays in the honour of Bertil Matérn. pp. 107–122. Swedish Univ. Agric. Sci., Section of Forest Biometry, S-901 83, Umeå, Sweden.

    Google Scholar 

  • Elliott, J. M. 1983. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biol. Assoc. Sci. Publ. 25.

    Google Scholar 

  • Fekete, G. & Szöcs, Z. 1974. Studies on interspecific association processes in space. Acta Bot. Acad. Sci. Hungary 20: 227–241.

    Google Scholar 

  • Finney, D. J. 1948. Random and systematic sampling in timber surveys. Forestry 22: 64–99.

    Google Scholar 

  • Finney, D. J. 1950. An example of periodic variation in forest sampling. Forestry 23: 96–111.

    Google Scholar 

  • Freese, F. 1961. Relation of plot size to variability: an approximation. J. Forestry 58: 679.

    Google Scholar 

  • Galiano, E. F. 1982. Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio 49: 39–43.

    Article  Google Scholar 

  • Galiano, E. F. 1983. Detection of multi-species patterns in plant populations. Vegetatio 53: 129–138.

    Google Scholar 

  • Galiano, E. F. 1985. The small-scale pattern of Cynodon dactylon in Mediterranean pastures. Vegetatio 63: 121–127.

    Article  Google Scholar 

  • Gauch, H. G. 1982. Multivariate analysis of community data. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Gibson, D. J. & Greig-Smith, P. 1986. Community pattern analysis: a method for quantifying community mosaic structure. Vegetatio 66: 41–47.

    Article  Google Scholar 

  • Goff, F. G. 1975. Comparison of species ordinations resulting from alternative indices of interspecific association and different number of included species. Vegetatio 31: 1–14.

    Article  Google Scholar 

  • Goodall, D. W. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Aust. J. Sci. Res., Ser. B 5: 1–41.

    CAS  Google Scholar 

  • Goodall, D.W. 1961. Objective methods for the classification of vegetation. IV. Pattern and minimal area. Aust. J. Bot. 9: 162–196.

    Article  Google Scholar 

  • Goodall, D. W. 1974. A new method for the analysis of spatial pattern by random pairing of quadrats. Vegetatio 29: 135–146.

    Article  Google Scholar 

  • Goodall, D. W. & West, N. E. 1979. A comparison of techniques for assessing dispersion patterns. Vegetatio 40: 15–27.

    Article  Google Scholar 

  • Green, R. H. 1979. Sampling design and statistical methods for environmental biologists. J. Wiley & Sons, New York.

    Google Scholar 

  • Greig-Smith, P. 1952. The use of random versus contiguous quadrats in the study of the structure of plant communities. Ann. Bot. Lond. N.S. 16: 293–316.

    Google Scholar 

  • Greig-Smith, P. 1983. Quantitative plant ecology. 3rd ed. U. California Press, Berkeley.

    Google Scholar 

  • Hahn, I. 1982. Einige Probleme der Probeentnahme bei der Schätzung der Arten und Individuendiversität. II. Eine mögliche Individuelzahnkorrektion. Bot. Közlem., Budapest 69: 59–70 (Hungarian with German summary).

    Google Scholar 

  • Hasel, A. A. 1938. Sampling errors in timber surveys. J. Agric. Res. 57: 713–736.

    Google Scholar 

  • Hill, M. 0. 1973. The intensity of spatial pattern in plant communities. J. Ecol. 61: 225–235.

    Article  Google Scholar 

  • Juhász-Nagy, P. & Podani, J. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51: 129–140.

    Article  Google Scholar 

  • Justesen. S. H. 1932. Influence of size and shape of plots on the precision of field experiments with potatoes. J. Agric. Sci. 22: 366–372.

    Article  Google Scholar 

  • Kalamakar, R. J. 1932. Experimental error and the field plot technique with potatoes. J. Agric. Sci. 22: 373–385.

    Article  Google Scholar 

  • Kenkel, N. C. 1988a. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69: 1017–1024.

    Article  Google Scholar 

  • Kenkel, N. C. 1988b. Spectral analysis of hummock-hollow pattern in a weakly minerotrophic mire. Vegetatio 78: 45–52.

    Article  Google Scholar 

  • Kershaw, K. A. 1961. Association and covariance analysis of plant communities. J. Ecol. 49: 643–654.

    Article  Google Scholar 

  • Knapp, R. (ed.) 1984. Sampling methods and taxon analysis in vegetation science. Junk, The Hague.

    Google Scholar 

  • Kulow, D. L. 1966. Comparison of forest sampling designs. J. Forestry 64: 469–474.

    Google Scholar 

  • Kwiatkowska, A. J. & Symonides, E. 1986. Spatial distribution of species diversity indices and their correlation with plot size. Vegetatio 68: 99–102.

    Google Scholar 

  • Laferrière, J. E. 1987. A central location method for selecting random plots for vegetation surveys. Vegetatio 71: 75–77.

    Google Scholar 

  • Ludwig, J. A. & Goodall, D. W. 1978. A comparison of paired- with blocked-quadrat variance methods for the analysis of spatial pattern. Vegetatio 38: 49–59.

    Article  Google Scholar 

  • Ludwig, J. A. & Reynolds, J. F. 1988. Statistical ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • Matthews, J. A. 1978. An application of non-metric multidimensional scaling to the construction of an improved species plexus. J. Ecol. 66: 157–173.

    Article  Google Scholar 

  • Mountford, M. D. 1961. On E. C. Pielou’s index of non-randomness. J. Ecol. 49: 271–275.

    Article  Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • Noy-Meir, I. & Anderson, D. J. 1971. Multiple pattern analysis, or multiscale ordination: towards a vegetation hologram? In: Patil, G. P., Pielou, E. C. & Waters, W. E. (eds), Many species populations, ecosystems, and systems analysis. pp. 207–225. Penn. State U. Press, University Park, Pa.

    Google Scholar 

  • Noy-Meir, I., Tadmor, N. H. & Orshan, G. 1970. Multivariate analysis of desert vegetation. I. Association analysis at various quadrat sizes. Israel J. Bot. 19: 561–591.

    Google Scholar 

  • Orlóci, L. 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Pechanec, J. F. & Stewart, G. 1940. Sagebrush-grass range sampling studies: size and structure of sampling units. J. Amer. Soc. Agron. 32: 669–682.

    Article  Google Scholar 

  • Pielou, E. C. 1959. The use of point-to-plant distances in the study of the pattern of plant populations. J. Ecol. 47: 607–613.

    Article  Google Scholar 

  • Pielou, E. C. 1962. The use of plant-to-neighbour distances for the detection of competition. J. Ecol. 50: 357–367.

    Article  Google Scholar 

  • Pielou, E. C. 1977. Mathematical ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • Podani, J. 1984a. Spatial processes in the analysis of vegetation: theory and review. Acta Bot. Hung. 30: 75–118.

    Google Scholar 

  • Podani, J. 1984b. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot. Hung. 30: 403–425.

    Google Scholar 

  • Podani, J. 1986. Comparison of partitions in vegetation studies. Abst. Bot. 10: 235–290.

    Google Scholar 

  • Podani, J. 1987. Computerized sampling in vegetation studies. Coenoses 2: 9–18.

    Google Scholar 

  • Prentice, I. C. & Werger, M. J. A. 1985. Clump spacing in a desert dwarf shrub community. Vegetatio 63: 133–139.

    Article  Google Scholar 

  • Ram Babu, M., Agarwal, C. & Puri, D. N. 1981. Size and shape of plots and blocks for field experiments in natural grasslands in Agra ravines. Indian J. Agric. Sci. 51: 271–275.

    Google Scholar 

  • Renshaw, E. & Ford, E. D. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.

    Google Scholar 

  • Ripley, B. D. 1977. Modelling spatial pattern. J. Royal Stat. Soc, Series B 39: 172–212.

    Google Scholar 

  • Ripley, B. D. 1981. Spatial statistics. J. Wiley & Sons, New York.

    Book  Google Scholar 

  • Scagel, R., el-Kassaby, Y. A. & Emanuel, J. 1985. Assessing sample size and variable number in multivariate data, with specific reference to cone morphology variation in a population of Picea sitchensis. Can. J. Bot. 63: 232–241.

    Article  Google Scholar 

  • Smartt, P. F. M. 1978. Sampling for vegetation survey: a flexible systematic model for sample location. J. Biogeogr. 5: 43–56.

    Article  Google Scholar 

  • Smartt, P. F. M. & Grainger, J. E. A. 1974. Sampling for vegetation survey: some aspects of the behaviour of unrestricted and stratified techniques. J. Biogeogr. 1: 193–206.

    Article  Google Scholar 

  • Sukhatme, P. V., Sukhatme, B. V., Sukhatme, S. & Asok, C. 1984. Sampling theory of surveys with applications. Iowa State Univ. Press, Ames.

    Google Scholar 

  • Upton, G. J. G. & Fingleton, B. 1985. Spatial data analysis by example. Vol. 1. Point pattern and quantitative data. J. Wiley & Sons, New York.

    Google Scholar 

  • Van Dyne, G. M., Vogel, W. G. & Fisser, H. G. 1963. Influence of small plot size and shape on range herbage production estimates. Ecology 44: 746–759.

    Article  Google Scholar 

  • Wiegert, R. G. 1967. The selection of an optimum quadrat size for sampling the standing crop of grasses and forbs. Ecology 43: 125–129.

    Article  Google Scholar 

  • Wilks, S. S. 1962. Mathematical statistics. J. Wiley & Sons, New York.

    Google Scholar 

  • Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.

    Article  Google Scholar 

  • Yandle, D. O. & Wyant, H. V. 1981. Comparison of fixed-radius circular plot sampling with simple random sampling. Forest Sci. 27: 245–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Grabherr L. Mucina M. B. Dale C. J. F. Ter Braak

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kenkel, N.C., Juhász-Nagy, P., Podani, J. (1990). On sampling procedures in population and community ecology. In: Grabherr, G., Mucina, L., Dale, M.B., Ter Braak, C.J.F. (eds) Progress in theoretical vegetation science. Advances in vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1934-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1934-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7363-9

  • Online ISBN: 978-94-009-1934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics