Skip to main content

Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean

  • Chapter
Nitrogen Cycling in the North Atlantic Ocean and its Watersheds

Abstract

The North Atlantic Ocean receives the largest allochthonous supplies of nitrogen of any ocean basin because of the close proximity of industrialized nations. In this paper, we describe the major standing stocks, fluxes and transformations of nitrogen (N) and phosphorus (P) in the pelagic regions of the North Atlantic, as one part of a larger effort to understand the entire N and P budgets in the North Atlantic Ocean, its watersheds and overlying atmosphere. The primary focus is on nitrogen, however, we consider both nitrogen and phosphorus because of the close inter-relationship between the N and P cycles in the ocean. The oceanic standing stocks of N and P are orders of magnitude larger than the annual amount transported off continents or deposited from the atmosphere. Atmospheric deposition can have an impact on oceanic nitrogen cycling at locations near the coasts where atmospheric sources are large, or in the centers of the highly stratified gyres where little nitrate is supplied to the surface by vertical mixing of the ocean. All of the reactive nitrogen transported to the coasts in rivers is denitrified or buried in the estuaries or on the continental shelves and an oceanic source of nitrate of 0.7–0.95 × 1012 moles NO -3 y-1 is required to supply the remainder of the shelf denitrification (Nixon et al., this volume). The horizontal fluxes of nitrate caused by the ocean circulation are both large and uncertain. Even the sign of the transport across the equator is uncertain and this precludes a conclusion on whether the North Atlantic Ocean as a whole is a net source or sink of nitrate. We identify a source of nitrate of 3.7–6.4 × 1012 moles NO -3 y-1 within the main thermocline of the Sargasso Sea that we infer is caused by nitrogen fixation. This nitrate source may explain the nitrate divergence observed by Rintoul & Wunsch (1991) in the mid-latitude gyre. The magnitude of nitrogen fixation inferred from this nitrate source would exceed previous estimates of global nitrogen fixation. Nitrogen fixation requires substantial quantities of iron as a micro-nutrient and the calculated iron requirement is comparable to the rates supplied by the deposition of iron associated with Saharan dust. Interannual variability in dust inputs is large and could cause comparable signals in the nitrogen fixation rate. The balance of the fluxes across the basin boundaries suggest that the total stocks of nitrate and phosphate in the North Atlantic may be increasing on time-scales of centuries. Some of the imbalance is related to the inferred nitrogen fixation in the gyre and the atmospheric deposition of nitrogen, both of which may be influenced by human activities. However, the fluxes of dissolved organic nutrients are almost completely unknown and they have the potential to alter our perception of the overall mass balance of the North Atlantic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman JW, Bentzen E, Peele ER, Cotner JB & Jeffrey WH (1994) Phosphorus cycling at the Bermuda time-series station: An overview. EOS 75: 100

    Google Scholar 

  • Anderson LA & Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles 8: 65–80

    Article  Google Scholar 

  • Anderson LG & Dyrssen DW (1981) Chemical constituents of the Arctic Ocean in the Svalbard area. Oceanol. Acta 4: 305–311

    Google Scholar 

  • Anderson LG, Dyrssen DW, Jones EP & Lowings MG (1983) Inputs and outputs of salt, freshwater, alkalinity and silica in the Arctic Ocean. Deep-Sea Res. 30: 87–94

    Article  Google Scholar 

  • Antia NJ, Harrison PG & Oliveira L (1991) The role of dissolved organic nitrogen in phyto-plankton nutrition, cell biology and ecology. Phycologia 30: 1–89

    Article  Google Scholar 

  • Baringer MO (1993) Mixing and dynamics of the Mediterranean outflow. M.I.T./WHOI, Ph.D. Dissertation

    Google Scholar 

  • Bates NR, Michaels AF & Knap AH (1996) Seasonal and interannual variability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic Time-series Study Site. Deep-Sea Res. 43: 347–383.

    Article  Google Scholar 

  • Berger WH(1970) Biogenous deep-sea sediments: Fractionation by deep-sea circulation. Geol. Soc. Am. Bull. 81: 1385–1402

    Article  Google Scholar 

  • Berger WH, Fisher K, Lai C & Wu G (1987) Ocean carbon flux: Global maps of primary productivity and export production. Scripps Inst. Oceanog.Ref. 87–30: 1–67

    Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental signficance. A. J. Sci. 282: 451–475

    Article  Google Scholar 

  • Bishop JKB (1989) Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In: Berger WH, Smetacek VS & Wefer G (Eds) Productivity of the Oceans: Past and Present (pp 117–137). Wiley, New York

    Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr. 17: 970–985

    Article  Google Scholar 

  • Bryan K (1962) Measurements of meridional heat transport by ocean currents. J. Geophys. Res. 67: 3403–3414

    Article  Google Scholar 

  • Bryden HL, Brady EC & Pillsbury RD (1989) Flow through the Strait off Gibralter. In: Almazan JP, Bryden H, Bryden T & Parrilla G (Eds) Seminario sobre la oceanografía fisca del estrecho de Gibralter, Madrid, 24–28 Octubre, 1988 (pp 166–194). SECEG, Madrid

    Google Scholar 

  • Bryden HL & Kinder TH (1991) Steady two-layer exchange through the Strait of Gibralter. Deep-Sea Res. 38: S445–S463

    Article  Google Scholar 

  • Buesseler KO (1992) Do upper-ocean sediment traps provide an accurate record of particle flux? Nature 353: 420–423

    Article  Google Scholar 

  • Carlson CA, Ducklow HW & Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwest Sargasso Sea. Nature 371: 405–408

    Article  Google Scholar 

  • Carpenter EJ (1983) Nitrogen Fixation by Marine Oscillatoria (Trichodesmium) in the World’s Oceans. Academic Press, Inc., New York

    Google Scholar 

  • Carpenter EJ & Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356–1358

    Article  Google Scholar 

  • Dugdale RC & Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206

    Article  Google Scholar 

  • Elardo KM (1994) Changes in proteins associated with nitrogen fixation and iron nutrition in the marine cyanobacterium Trichodesmium. Portland State University. 93 p

    Google Scholar 

  • Eppley RW & Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680

    Article  Google Scholar 

  • Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339: 460–463

    Article  Google Scholar 

  • Fanning KA (1992) Nutrient provinces in the sea: Concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. C Oceans 97: 5693–5712

    Article  Google Scholar 

  • Galloway J, Howarth R, Michaels A, Nixon S, Prospero J & Dentener F (this volume) N and P budgets of the North Atlantic Ocean and its watershed. Biogeochem.

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy II H, Michaels A & Schnoor JL (1995) Nitrogen fixation: Anthrogenic enhancement-environmental response. Global Biogeochecm. Cycles 9: 235–252

    Article  Google Scholar 

  • Ganeshram RS, Pedersen TF, Calvert SE & Murray JW (1995) Large increases in oceanic nutrient inventories from glacial to interglacial periods. Nature 376: 755–759

    Article  Google Scholar 

  • Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J. Mar. Res. 42: 359–393

    Article  Google Scholar 

  • Glover HE, Prezelin BB, Campbell L, Wyman M & Garside C (1988) A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water. Nature 331: 161–163

    Article  Google Scholar 

  • Goldman JC (1988) Spatial and temporal discontinuities of biological processes in pelagic surface waters. In: Rothschild B (Ed) Towards a Theory on Biological-Physical Interactions (pp 273–296). Kluwer, New York

    Google Scholar 

  • Gregg MC (1989) Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94: 9686–9698

    Article  Google Scholar 

  • Hall MM & Bryden HL (1982) Direct estimates and mechanisms of oceanic heat transport. Deep-Sea Res. 29: 339–360

    Article  Google Scholar 

  • Hansell DA (1993) Results and observations from the measnurement of DOC and DON in seawater using a high-temperature catalytic oxidation technique. Mar. Chem. 41: 195–202

    Article  Google Scholar 

  • Herbland A & Voituriez B (1979) Hydrological structure analysis for estimating the primary production of the tropical Atlantic Ocean. J. Mar. Res. 37: 87–101

    Google Scholar 

  • Hopkinson C, Cifuentes L, Burdige D, Fitzwater S, Hansell D, Henrichs S, Kahler P, Koike I, Walsh T & Bergamaschi B (1993) DON subgroup report. Marine Chemistry 41: 23–36

    Article  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Downing JA, Elmgren R, Caraco N & Lajtha K (this volume) Regional nitrogen budgets and riverine nitrogen fluxes for the drainage systems of the North Atlantic Ocean: Natural and human influences. Biogeochemistry

    Google Scholar 

  • Hutchins DA (1989) Nitrogen and iron interactions in filamentous cyanobacteria. Portland State University. 116 p

    Google Scholar 

  • Jahnke RA (1992) The Spatial Distribution of Sea Floor Oxygen Consumption in the Atlantic and Pacific Oceans. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Jenkins WJ (1980) Tritium and 3He in the Sargasso Sea. J. Mar. Res. 38: 533–569

    Google Scholar 

  • Jenkins WJ (1982) Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature 300: 246–248

    Article  Google Scholar 

  • Jenkins WJ (1988) The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Philos. Trans. R. Soc. London Ser. A 325: 43–61

    Article  Google Scholar 

  • Jenkins WJ & Goldman JC (1985) Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43: 465–491

    Article  Google Scholar 

  • Karl DM (1992) Trichodesmium Blooms and New Nitrogen in the North Pacific Gyre. Kluwer

    Google Scholar 

  • Karl DM & Bailiff MD (1989) The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol. Oceanog. 34: 543–558

    Article  Google Scholar 

  • Karl DM, Letelier R, Hebel D, Tupas L et al. (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–1992 El Niño. Nature 373: 230–234

    Article  Google Scholar 

  • Knap A, Jickells T, Pszenny A & Galloway J (1986) Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature 320: 158–160

    Article  Google Scholar 

  • Krom MD, Kress N, Brenner S & Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanog. 36: 424–432

    Article  Google Scholar 

  • Leaman KD (1994) The formation of Western Mediterranean Deep Water. Coast. Est. Studies 46: 227–248

    Article  Google Scholar 

  • Leaman KD, Johns E & Rossby T (1989) The average distribution of volume transport and potential vorticity with temperature at three sections across the Gulf Stream. J. Phys. Oceanogr. 19: 36–51

    Article  Google Scholar 

  • Ledwell JR, Watson AJ & Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364: 701–703

    Article  Google Scholar 

  • Lewis MR, Harrison WG, Oakey NS, Hebert D & Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234: 870–873

    Article  Google Scholar 

  • Lipschultz F & Owens NJP (this volume) An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry

    Google Scholar 

  • Lipschultz F, Zafiriou OC & Ball LA (1996) Seasonal fluctuations of nitrite concentrations inthe deep oligotrophic ocean. Deep-Sea Res. 43: 403–420

    Article  Google Scholar 

  • Lohrenz SE, Knauer GA, Asper VL, Tuel M, Michaels AF & Knap AH (1992) Seasonal and interannual variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic Time-series Study. Deep-Sea Res. 39: 1373–1391

    Article  Google Scholar 

  • Longhurst AR & Harrison WG (1988) Vertical nitrogen flux from the oceanic euphotic zone by diel migrant Zooplankton and nekton. Deep-Sea Res. 35: 881–889

    Article  Google Scholar 

  • Martel F & Wunsch C (1993) The North Atlantic circulation in the early 1980’s — an estimate from inversion of a finite-difference model. J. Phys. Oceanogr. 23: 898–924

    Article  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM, Hunter CN & Tanner S J (1993) Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res., Pt. II 40: 115–134

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM & Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Research 34: 267–285

    Article  Google Scholar 

  • McCave IN (1975) Vertical flux of particles in the ocean. Deep-Sea Res. 22: 491–502

    Google Scholar 

  • McClain CR & Firestone J (1993) An investigation of Ekman upwelling in the North Atlantic. J. Geophys. Res. 98: 12327–12339

    Article  Google Scholar 

  • Michaels AF, Bates NR, Buesseler KO, Carlson CA & Knap AH (1994a) Carbon-cycle imbalances in the Sargasso Sea. Nature 372: 537–540

    Article  Google Scholar 

  • Michaels AF & Knap AH (1996) An overview of the Bermuda Atlantic Time-series Study and Hydrostation S programs. Deep-Sea Res. 43: 157–198

    Article  Google Scholar 

  • Michaels AF, Knap AH, Dow RL, Gundersen K, Johnson RJ, Sorensen J, Close A, Knauer GA, Lohrenz SE, Asper VA, Tuel M & Bidigare RR (1994b) Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site. Deep-Sea Res. 41: 1013–1038

    Article  Google Scholar 

  • Michaels AF, Siegel DA, Johnson RJ, Knap AH & Galloway JN (1993) Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phyto-plankton blooms. Global Biogeochem. Cycles 7: 339–351

    Article  Google Scholar 

  • Michaels AF & Silver MW (1988) Primary production, sinking fluxes and the microbial food web. Deep-Sea Research 35: 473–490

    Article  Google Scholar 

  • Munk W (1966) Abyssal recipes. Deep-Sea Res. 13: 707–730

    Google Scholar 

  • Najjar RG, Sarmiento JL & Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model. Glogal Biogeochem. Cycles 6: 45–76

    Article  Google Scholar 

  • Nixon SW, Ammerman J, Atkinson L, Berounsky V, Billen G, Boynton BW, Church T, DiToro D, Elmgren R, Garber J, Giblin A, Jahnke R, Ownes N, Pilson MEQ & Seitzinger S (this volume) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry

    Google Scholar 

  • Olson RJ (1981) 15N tracer studies of the primary nitrite maximum. J. Mar. Res. 39: 203–226

    Google Scholar 

  • Owens NJP, Galloway JN & Duce RA (1992) Episodic atmospheric nitrogen deposition to oligotrophic oceans. Nature 357: 397–399

    Article  Google Scholar 

  • Paerl HW (1985) Enhancement of marine primary production by nitrogen-enriched acid rain. Nature 315: 747–749

    Article  Google Scholar 

  • Platt T, Caverhill C & Sathyendranath S (1991) Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic. J. Geophys.Res. 96: 15147–15159

    Article  Google Scholar 

  • Price JF, Barringer MO, Lueck RG, Johnson GC, Ambar I, Parrilla G, Cantos A, Kennelly MA & Sanford TB (1993) The Mediterranean Outflow. Science 259: 1277–1282

    Article  Google Scholar 

  • Prospero JM, a. Author & b. Author (this volume) Nitrogen dynamics of the North Atlantic Ocean: Atmospheric deposition of nutrients to the North Atlantic basin. Biogeochemistry

    Google Scholar 

  • Quinn PK, Barrett KJ, Dentener FJ, Lipschultz F & Kurtz KD (this volume) Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. Biogeochemistry

    Google Scholar 

  • Quinn PK, Bates TS, Johnson JE, Covert DS & Charlson RJ (1990) Interactions between sulfur and reduced nitrogen cycles over the Central Pacific Ocean. J. Geophys. Res. 95: 16405–16416

    Article  Google Scholar 

  • Quinn PK, Charlson RJ & Bates TS (1988) Simultaneous observations of ammonia in the atmosphere and ocean. Nature 335: 336–338

    Article  Google Scholar 

  • Redfield AC, Ketchum BH & Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (Ed) The Sea (pp 26–77). Wiley, New York

    Google Scholar 

  • Rintoul SR & Wunsch C (1991) Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep-Sea Res. 38: S355–S377

    Google Scholar 

  • Roemmich D (1981) Circulation of the Caribbean Sea: A well resolved inverse problem. J. Geophys.Res. 86: 7993–8005

    Article  Google Scholar 

  • Roemmich D (1983) The balance of geostrophic and Ekman transports in the tropical Atlantic Ocean. J. Phys. Oceanogr. 13: 1534–1539

    Article  Google Scholar 

  • Romans KM, Carpenter EJ & Bergman B (1994) Buoyancy regulation in the colonial dia-zotrophic cyanobacterium trichodesmium tenue — ultrastructure and storage of carbohydrate, polyphosphate and nitrogen. J. Phycol. 30: 935–942

    Article  Google Scholar 

  • Rueter JG, Hutchins DA, Smith RW & Unsworth NL (1992) Iron nutrition of Trichodesmium. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sarmiento JL (1983) A tritium box model of the North Atlantic thermocline. J. Phys. Oceanog. 13: 1269–1274

    Article  Google Scholar 

  • Sarmiento JL (1986) On the north and tropical Atlantic heat balance. J. Geophys. Res. 91: 11677–11689

    Article  Google Scholar 

  • Sarmiento JL, Herbert T & Toggweiler JR (1988) Mediterranean nutrient balance and episodes of anoxia. Global Biogeochem. Cycles 2: 427–444

    Article  Google Scholar 

  • Sarmiento JL, Slater RD, Fasham MJR, Ducklow HW, Toggweiler JR & Evans GT (1993) A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem. Cycles 7: 417–450

    Article  Google Scholar 

  • Sarmiento JL, Thiele G, Key RM & Moore WS (1990) Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre. J. Geophys. Res. 95: 18303–8315

    Article  Google Scholar 

  • Schlitzer R (1988) Modeling the nutrient and carbon cycles of the North Atlantic. 1. Circulation, mixing coefficients and heat fluxes. J. Geophys Res. 93: 10699–10723

    Article  Google Scholar 

  • Schlitzer R (1989) Modeling the nutrient and carbon cycles of the North Atlantic. 2. New production, particle fluxes, CO sub(2) gas exchange, and the role of organic nutrients. J. Geophys. Res. C Oceans. 94: 12781–794

    Article  Google Scholar 

  • Schmitz WJ & Richardson PL (1991) On the sources of the Florida Current. Deep-Sea Res. 38: S379–S409

    Google Scholar 

  • Seitzinger SP & Giblin AE (in press) Estimating denitrification in North Atlantic continental shelf sediments. Biogeochem.

    Google Scholar 

  • Sharp JH (1983) The distributions of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. In: Carpenter EG & Capone DG (Eds) Nitrogen in the Marine Environment (pp 1–35). Academic Press, New York

    Google Scholar 

  • Siegel DA, Itturiaga R, Bidigare RR, Smith RC, Pak H, Dickey TD, Marra J & Baker KS (1990) Meridional variations of the spring-time phytoplankton community in the Sargasso Sea. J. Mar. Res. 48: 379–412

    Article  Google Scholar 

  • Suzuki Y, Sugimura Y & Itoh T (1985) A catalytic oxidation method for the determination of total nitrogen dissolved in seawater. Mar. Chem. 16: 83–97

    Article  Google Scholar 

  • Toggweiler JR (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: Berger WH, Smetacek VS & Wefer G (Eds) Productivity of the Oceans: Past and Present (pp 65–83). Wiley, New York

    Google Scholar 

  • Trenburth KE & Soloman A (1994) The global heat balance — Heat transports in the atmosphere and ocean. Climate Dynamics 10: 107–134

    Article  Google Scholar 

  • Villareal T & Carpenter EJ (1990) Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnology and Oceanography 35: 1832–1837

    Article  Google Scholar 

  • Von der Haar T & Ort AH (1973) New estimate of annual poleward energy transport by northern hemisphere oceans. J. Phys. Oceanogr. 2: 169–172

    Article  Google Scholar 

  • Walsh JJ, Dieterle DA, Meyers MB & Mueller-Karger FE (1989) Nitrogen exchange at the continental margin: A numerical study of the Gulf of Mexico. Prog. Oceanogr. 23: 245–301

    Article  Google Scholar 

  • Walsh TW (1989) Total dissolved nitrogen in seawater: A new high-temperature combustion method and a comparison with photo-oxidation. Mar. Chem. 26: 295–311

    Article  Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen, and argon in water and seawater. Deep Sea Res. 17:721–735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert W. Howarth

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Michaels, A.F. et al. (1996). Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. In: Howarth, R.W. (eds) Nitrogen Cycling in the North Atlantic Ocean and its Watersheds. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1776-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1776-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7293-9

  • Online ISBN: 978-94-009-1776-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics