Skip to main content

Software for Modelling Semiconductor Devices in Three Dimensions

  • Conference paper
Esprit ’89

Abstract

In recent years three-dimensional modelling of semiconductor devices has become increasingly important due to the continued miniaturisation of devices. There has been a corresponding increase in the research devoted to developing three-dimensional numerical models of devices. Here we discuss some of the work in the ESPRIT project EVEREST relating to this. We describe in detail the software implementation of the algorithmic techniques being developed in the project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Scharfetter and H.K. Gummel “ arge signal analysis of a Silicon Read diode oscillator”, IEEE Trans. Elect. Dev., ED-16, 64–77 (1969).

    Article  Google Scholar 

  2. J.O. Beck and R. Conradt,“Auger recombination in silicon”, Solid State Comm. vol. 13 93–95 (1973).

    Article  Google Scholar 

  3. C. den Heijer,“Preconditioned iterative methods for nonsymmetric linear systems”, Proc.Int.Conf. Simulation of Semiconductor Devices and Processes, Pineridge Press, Swansea, 276–285 (1984).

    Google Scholar 

  4. H.P.D. Lanyon and R.A. Tuft, “Bandgap narrowing in heavily doped silicon”, Proc IEDM, pp 316–319 (1978).

    Google Scholar 

  5. J.A. Meijerink and H.A. Van der Vorst, “Guidlines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems”,J. Comp. Phys.,44 134–155 (1981).

    Article  MATH  Google Scholar 

  6. S.J. Polak, C. Den Heijer, W.H.A. Schilders and P. Markowich, “Semiconductor device modelling from the numerical point of view”, Int. J. Num. Meth. Eng. 24, 763–838 (1987).

    Article  MATH  Google Scholar 

  7. S. Selberherr, “Analysis and simulation of semiconductor devices” Springer-Verlag, Wien-New York (1984).

    Google Scholar 

  8. W. Shockley and W.T. Read Jr. “Statistics of the recombination of holes and electrons” Phys. Rev. 87, No.5, 835–842 (1952).

    Article  MATH  Google Scholar 

  9. J.W. Slotboom and H.C.De Graaf,“Bandgap narrowing in silicon bipolar transistors”, IEEE Trans. Elect. Dev. 24, 1123–1125 (1977).

    Article  Google Scholar 

  10. G. Voronoi, “Nouvelles applications des parametres continus a la theorie des formes quadratiques”, J. Reine Angew. Math. 134, No.4, 198–287 (1908).

    Article  MATH  Google Scholar 

  11. O.E. Akcasu, “Convergence of Newton’s method for the solution of the semiconductor transport equations and hybrid solution techniques for multidimensional simulation of VLSI devices”, Solid State Elect. (GB) 27, No. 4, 319–328 (1984).

    Article  Google Scholar 

  12. G.L. Dirichlet, “Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen”, J. Reine Angew. Math. 40, No. 3, 209–227 (1850).

    Article  MATH  Google Scholar 

  13. S.P. Edwards, A.M. Howland and P.J. Mole, “Initial guess strategy and linear algebra techniques for a coupled two dimensional equation solver”, NASECODE IV Proc, Dublin, Boole Press, 1985.

    Google Scholar 

  14. W.L. Engl, H.K. Dirks and B Meinzerhagen, “Device modeling”,Proc. IEEE 71, No. 1, 10–33 (1983).

    Article  Google Scholar 

  15. J.G. Fossum and D.S. Lee,“A Physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon”, Solid State Electron, Vol.25, No.8, 741–747 (1982).

    Article  Google Scholar 

  16. B.J. McCartin, “Discretisation of the semiconductor device equations”, from New Problems and New Solution for Device and Process Modelling (ed. J.J.H. Miller) Boole Press, Dublin (1985)

    Google Scholar 

  17. P.J. Mole, R. Debney and R. Van De Poel, “First issue release documentation for the linear solver, sparsity generation, Jacobian filling and machine constant routines”, EC Microelectronic Project MR-02-RAL, Report GEC 5.3 (June 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 1989 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Greenough, C., Gunasekera, D., Mawby, P.A., Towers, M.S., Fitzsimons, C.J. (1989). Software for Modelling Semiconductor Devices in Three Dimensions. In: Esprit ’89. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1063-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1063-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6968-7

  • Online ISBN: 978-94-009-1063-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics