Skip to main content

Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance

  • Conference paper
Progress in Littorinid and Muricid Biology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 56))

Abstract

An examination of the shell microstructure and mineralogy of species from 30 of the 32 genera and subgenera of the gastropod family Littorinidae shows that most species have a shell consisting of layers of aragonitic crossed-lamellar structure, with minor variations in some taxa. However, Pellilitorina, Risellopsis and most species of Littorina have partly or entirely calcitic shells. In Pellilitorina the shell is made entirely of calcitic crossed-foliated structure, while in the other two genera there is only an outer calcitic layer of irregular-prismatic structure. A cladistic analysis shows that the calcitic layers have been independently evolved in at least three clades. The calcite is found only in the outermost layers of the shell and in species inhabiting cooler waters of both northern and southern hemispheres. Calcium carbonate is more soluble in cold than warm water and, of the two polymorphs, calcite is about 35% less soluble than aragonite. We suggest that calcitic shell layers are an adaptation of high latitude littorinids to resist shell dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandersson, E. T., 1975. Etch patterns on calcareous sediment grains: petrographic evidence of marine dissolution of carbonate minerals. Science 189: 47–48.

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson, E. T., 1978. Destructive diagenesis of carbonate sediments in the eastern Skagerrak, North Sea. Geology 6: 324–327.

    CAS  Google Scholar 

  • Alexandersson, E. T., 1979. Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26: 845–852.

    Google Scholar 

  • Arnaud, P. M. & K. Bandel, 1978. Comments on six species of marine Antarctic Littorinacea ( Mollusca, Gastropoda). Tethys 8: 213–230.

    Google Scholar 

  • Bandel, K., 1979. Ubergange von einfacheren Strukturtypen zur Kreuslamellen-struktur bei Gastropodenschalen. Biomineralization 10: 9–38.

    Google Scholar 

  • Batten, R. L., 1975. The Scissurellidae - are they neotenously derived Fissurellids? (Archeogastropoda). Am. Mus. Novit. 2567: 1–37.

    Google Scholar 

  • Beggild, O. B., 1930. The shell structure of the mollusks. K. danske Vidensk. Selsk. Skr. Roekke 9: 233–326.

    Google Scholar 

  • Broeker, W. S., T. Takahashi, H. J. Simpson & T. H. Peng, 1979. Fate of fossil fuel carbon dioxide and the global carbon cycle. Science 206: 409–418.

    Article  Google Scholar 

  • Carter, J. G., 1980. Environmental and biological controls of bivalve shell mineralogy and microstructure. In D. C. Rhoads & R. A. Lutz (eds). Skeletal Growth of Aquatic Organisms. Plenum Press, New York: 69–113.

    Google Scholar 

  • Carter, J. G.& G. R. Clark, 1985. Classification and phylogenetic significance of molluscan shell structures. In T. W. Broadhead (ed.), Mollusks, Notes for a Short Course. University of Tennessee Department of Geological Sciences Studies in Geology 13: 50–71.

    Google Scholar 

  • Coddington, J. A., 1988. Cladistic tests of adaptational hypotheses. Cladistics 4: 3–22.

    Article  Google Scholar 

  • Currey, J. D., 1980. Mechanical properties of mollusc shell. Symp. Soc. exp. Biol. 34: 75–97.

    Google Scholar 

  • Currey, J. D., 1988. Shell form and strength. In E. R. Trueman & M. R. Clarke (eds), The Mollusca, 11: 183–210.

    Google Scholar 

  • Daniel, M. J. & C. R. Boyden, 1975. Diurnal variations in physico-chemical conditions within intertidal rockpools. Field Studies 4: 161–176.

    Google Scholar 

  • Dodd, J. R., 1963. Palaeoecological implications of shell min- eralogy in two pelecypod species. J. Geol. 71: 1–11.

    Article  Google Scholar 

  • Dodd, J. R., 1964. Environmentally controlled variation in the shell structure of.a pelecypod species. J. Paleont. 38: 1065–1071.

    Google Scholar 

  • Ekaratne, S. U. K. & D. J. Crisp, 1982. Tidal micro-growth bands in intertidal gastropod shells, with an evaluation of band-dating techniques. Proc. r. Soc. B. 214: 305–323.

    Google Scholar 

  • Kennedy, W. J., J. D. Taylor & A. Hall, 1969. Environmental and biological controls on bivalve shell mineralogy. Biol. Rev. 44: 499–530.

    Google Scholar 

  • Kennish, M. J., R. A. Lutz & D. C. Rhoads, 1980. Preparation of acetate peels and fractured sections for observations of growth patterns within the bivalve shell. In D. C. Rhoads & R. A. Lutz (eds), Skeletal Growth of Aquatic Organisms. Plenum Press, New York: 597–606.

    Google Scholar 

  • Kobayashi, I., K. Mano, F. Isogai & O. Masae, 1983. Bio-mineral formation of gastropods in comparison with that of pelecypods. In P. Westbroek & E. W. DeJong (eds), Biomineralization and Biological Metal Accumulation. Reidel, Dordrecht, Netherlands: 261–266.

    Google Scholar 

  • Lorens, R. B. & M. L. Bender, 1980. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim. Cosmochem. Acta 44: 1265–1278.

    Google Scholar 

  • Lowenstam, H. A., 1954. Factors affecting the aragonite: calcite ratios in carbonate-secreting organisms. J. Geol. 62: 284–322.

    Article  CAS  Google Scholar 

  • MacClintock, C., 1967. Shell structure of patelloid and bellerophontoid gastropods. Bull. Peabody Mus. nat. Hist. 22: 1–140.

    Google Scholar 

  • Mackensie, F. T., W. D. Bischoff, F. C. Bishop, M. Loijens, J. Schoonmaker & R. Wollast, 1983. Magnesian calcites: low temperature occurrence, solubility and solid state behaviour. Reviews in Mineralogy 11: 97–144.

    Google Scholar 

  • Meyer, H. J., 1984. The influence of impurities on the growth rate of calcite. J. Crystal Growth 66: 639–646.

    Article  CAS  Google Scholar 

  • Morse, J. W., 1983. The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy 11: 227–264.

    CAS  Google Scholar 

  • Mucci, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 283: 780–799.

    Google Scholar 

  • Mutvei, H., Y. Dauphin & J.-P. Cuif, 1985. Observations sur l’organisation de la couche externe du test des Haliotis (Gastropoda): un cas exceptionnel de variabilité minéralogique et microstructurale. Bull. Mus. natn. Hist. nat., Paris, 4 sér. 7: 73–91.

    Google Scholar 

  • Petitjean, M., 1965. Structure microscopique, nature minéralogique et composition chimique de la coquille des Muricidés (Gastèropodes Prosobranches). Importance systématique de ces caractères. Thèse à la Faculté des Sciences de l’Université de Paris, 131 pp.

    Google Scholar 

  • Reid, D. G., 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Phil. Trans. r. Soc., Lond. Ser. B 324: 1–110.

    Google Scholar 

  • Schmalz, R. F. & F. J. Swanson, 1969. Diurnal variations in the carbonate saturation of seawater. J. sedim. Petrol. 39: 255–267.

    Google Scholar 

  • Shimamoto, M., 1986. Shell microstructure of the Veneridae (Bivalvia) and its phylogenetic implications. Sci. Rep. Tôhoku Univ. Ser. 2. Geology 56: 1–39.

    Google Scholar 

  • Taylor, J. D. & W. J. Kennedy, 1969. The shell structure and mineralogy of Chama pellucida. Veliger 11: 391–398.

    Google Scholar 

  • Taylor, J. D. & M. Layman, 1972. The mechanical properties of bivalve ( Mollusca) shell structures. Palaeontology 15: 73–87.

    Google Scholar 

  • Taylor, J. D., W. J. Kennedy & A. Hall, 1969. The shell structure and mineralogy of the Bivalvia. I. Introduction. Nuculacea-Trigonacea. Bull. Brit. Mus. nat. Hist. Suppl. 3: 1–125.

    Google Scholar 

  • Taylor, J. D., W. J. Kennedy & A. Hall, 1973. The shell structure and mineralogy of the Bivalvia. II. LucinaceaClavagellacea. Conclusions. Bull. Br. Mus. nat. Hist. Zool. 22: 253–294.

    Google Scholar 

  • Togo, Y., 1974. Shell structure and growth of protoconch and teleoconch in Neptunea ( Gastropoda ). Chishitsugaku Zasshi 80: 369–380.

    Google Scholar 

  • Trudgill, S. T., 1976. The marine erosion of limestones on Aldabra Atoll, Indian Ocean. Z. Geomorph. Suppl. 26: 164–200.

    CAS  Google Scholar 

  • Uozumi, S. & S. Suzuki, 1981. The evolution of shell structures in the Bivalvia. In T. Habe & M. Omori (eds), Studies of Molluscan Paleobiology. Niigata University, Niigata, Japan: 63–77.

    Google Scholar 

  • Vermeij, G. J., 1978. Biogeography and Adaptation. Harvard University Press, Cambridge, Massachusetts, 332 pp.

    Google Scholar 

  • Vermeij, G. J. & J. D. Currey, 1980. Geographical variation in the strength of thaidid snail shells. Biol. Bull. 158: 383–389.

    Google Scholar 

  • Waller, T. R., 1978. Morphology, morphoclines, and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Phil. Trans. r. Soc., Lond. Ser. B 284: 345–365.

    Article  Google Scholar 

  • Walter, L. M. & J. W. Morse, 1984. Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J. sedim. Petrol. 54: 1081–1090.

    Google Scholar 

  • Watabe, N., 1988. Shell structure. In E. R. Trueman & M. R. Clarke (eds), The Mollusca, 11: 69–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Johannesson D. G. Raffaelli C. J. Hannaford Ellis

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Taylor, J.D., Reid, D.G. (1990). Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. In: Johannesson, K., Raffaelli, D.G., Hannaford Ellis, C.J. (eds) Progress in Littorinid and Muricid Biology. Developments in Hydrobiology, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0563-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0563-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6741-6

  • Online ISBN: 978-94-009-0563-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics