Skip to main content

Materials for RTM

  • Chapter
Resin Transfer Moulding
  • 428 Accesses

Abstract

Fibre types known to have been processed by RTM include E, R & S glass, quartz, a wide variety of high-strength and high-modulus carbon fibres and aramids. No difficulties are known with any specific fibre type. For maximum quality in RTM moulding near instantaneous wet-out by resin is required. The resin needs to wet the reinforcing fibres naturally. Some difficulties have been experienced with glass fibre and cold cure phenolic resin combinations, but most resin-fibre combinations do not present difficulties. A simple check to verify that resin is naturally wicked up by the reinforcement at the injection temperature to be used is a sensible precaution to ensure compatibility at this level. This need be no more complex than placing a small quantity of resin on the reinforcement surface at the required temperature; if the resin is rapidly drawn into the reinforcement compatibility should be adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turner, M. R., Rudd, C. D., Long, A. C., Middleton, V. and McGeehin, P. (1995) J. Advanced Composite Letters 4, 121–4.

    Google Scholar 

  2. Summerscales, J. (1993) A model for the effect of fibre clustering on the flow rate in resin transfer moulding, Composites Manufacturing 4, 27–31.

    Article  CAS  Google Scholar 

  3. Basford, D., Griffin, P., Grove, S. and Summerscales, J. (1995) Relationship between mechanical performance and microstructure in composites fabricated with flow-enhancing fabrics, Composites 26, 675–9.

    Article  Google Scholar 

  4. Heins, G. and Jackson, P. (1987) Novel reinforcing fabrics for high performance composites, Proc. 42nd Annual Conf. Composites Institute, SPI, Feb., Session 7B.

    Google Scholar 

  5. Hogg, P. J., Ahmadnia, A. and Guild, F. (1993) The mechanical properties of non-crimped fabric based composites, Composites 24(8), 423–32.

    Article  CAS  Google Scholar 

  6. Raz, S. (1988) The Karl Meyer Guide to Technical Textiles, Obertshausen: Karl Meyer Textilmaschinefabrik.

    Google Scholar 

  7. Parat, I., Greenwood, K. and Li, Z. (1996) CAD/CAM of 3D woven structures (preforms) for fibre reinforced composites, Composites, Part A, 27A, 111–17.

    Google Scholar 

  8. Bruno, P., Keith, D. and Vicario, A. (1986) Automatically woven 3D composite structures, SAMPE Quarterly 17(4), 10–17.

    CAS  Google Scholar 

  9. Brown, R. (1985) Through the thickness braiding technology, Proc. 30th Annual SAMPE Symposium, March, 1509–18.

    Google Scholar 

  10. Olsen, N. (1986) Advanced manufacturing technology for structural aircraft/aerospace components, Proc. 31st Int. SAMPE Symposium, 387–93.

    Google Scholar 

  11. Verpoest, L, Wevers, M. and De Meester, P. (1989) 2.5D and 3D fabrics for delamination resistant composite laminates and sandwich structures, SAMPE Journal 25(3), 51–6.

    Google Scholar 

  12. Wang, C. Z. et al. (1989) Fracture toughness and failure modes of interleaved fibre composites. Economic comparison of advanced composite fabrication technologies, Proc. 34th SAMPE Symposium, 1497–1506.

    Google Scholar 

  13. Walker, N. (1987) Veils, mats and tissues for non-structural applications, Proc. ICCM6/ECCM2, July, London: Elsevier Applied Science, 5. 547–56.

    Google Scholar 

  14. Yates, B., McCalla, B., Phillips, L., Kingston-Lee, D. and Rogers, K. (1979) The thermal expansion of carbon fibre reinforced plastics. Part 5. The influence of matrix curing characteristics, J. Mat. Sci. 14, 1207–17.

    Article  CAS  Google Scholar 

  15. Stark, E. et al. (1987) New non-MDA epoxy resin systems for RTM and filament winding, 32nd International SAMPE Symposium, April, 1092–1103.

    Google Scholar 

  16. Puckett, P. and White, W. (1990) Thermoset resin systems and manufacturing technology for RTM. In Resin Transfer Moulding for the Aerospace Industry, Los Angeles: SME, 6–7 March.

    Google Scholar 

  17. 3M Datasheet, PR 500 RTM resin system.

    Google Scholar 

  18. Stenzenberger, H. D. et al. (1989) Advanced composites processing with bismaleimide resins. Materials and processing — move into the 90s, SAMPE European Chapter Conference, July, 277–92.

    Google Scholar 

  19. Stark, E., Breitigam, W., Farris, R., Davis, D. and Stenzenberger, H. (1990) RTM of high performance resins, Proc. 35th International SAMPE Symposium, April, 782–94.

    Google Scholar 

  20. Okamoto, Y., Klemarczyk, P. and Levandaski, S. (1993) Novel vinyl ether thermosetting resins, Polymer 34(4), 691–5.

    Article  CAS  Google Scholar 

  21. Stockton, J. (1989) Structural resin transfer molding of high temperature composites, 34th International SAMPE Symposium, May, 1032–40.

    Google Scholar 

  22. 3M PT500 binder datasheet.

    Google Scholar 

  23. Horn, S., Buckley, D. and Seroogy, K. (1990) High volume, highly automated preform process for RTM and SRIM, 45th Annual Conf. Composites Institute, SPI, Feb., Session 9-C.

    Google Scholar 

  24. Hansen, R. S. (1990) RTM processing and applications. In Resin Transfer Moulding for the Aerospace Industry, Los Angeles: SME, 6–7 March.

    Google Scholar 

  25. Jones, W. and Johnson, J. (1980) A resin injection technique for the fabrication of aero-engine composite components, Proc. Syposium: Fabrication Techniques for Advanced Reinforced Plastics, April, Salford: IPC Science and Technology, 40–7.

    Google Scholar 

  26. Kittelson, J. L. and Hacket, S. C. (1994) Tackifier/resin compatibility is essential for aerospace grade RTM, Proc. 39th International SAMPE Symposium, April, 83–96.

    Google Scholar 

  27. Masters, J. E., Courter, J. L. and Evans, R. E. (1986) Impact fracture and failure suppression using interleafed composites, 31st International SAMPE Symposium, April, 844–58.

    Google Scholar 

  28. McCarthy, R., Haines, G. and Newley, R. (1994) Polymer composite applications to aerospace equipment, Composites Manufacturing 5(2), 83–93.

    Article  CAS  Google Scholar 

  29. Akay, M. and Hanna, R. (1990) A comparison of honeycomb core and foam core carbon/epoxy sandwich panels, Composites 21(4), 325–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kevin Potter

About this chapter

Cite this chapter

Potter, K. (1997). Materials for RTM. In: Resin Transfer Moulding. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0021-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0021-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6497-2

  • Online ISBN: 978-94-009-0021-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics