Skip to main content

Adverse Intrauterine Environment and Gamete/Embryo-Fetal Origins of Diseases

  • Chapter
  • First Online:
Gamete and Embryo-fetal Origins of Adult Diseases

Abstract

The ‘fetal origins of adult disease (FOAD)’ hypothesis proposes that developmental programming during gestation may influence adult health and disease [1]. It suggests a process where events occurring at critical, or sensitive, periods of fetal development, permanently alter structure, physiology, or metabolism. These changes predispose affected individuals to diseases in later life.

Barker and his colleagues were the first to develop the concept of FOAD based on significant associations between low birthweight and the risk of chronic diseases in adulthood, including coronary artery disease, hypertension and stroke, type 2 diabetes, and osteoporosis. Several other groups confirmed associations between birthweight and adult health in other populations. These adverse intrauterine environments include gestational diabetes mellitus (GDM), intrauterine undernutrition and pre-eclampsia, which are common and severe gestational complications. Furthermore, certain antenatal nutritional disturbances can increase the risk of diseases later in life without affecting fetal growth. In this chapter, we will discuss the evidence related to adverse intrauterine environment and embryo-fetal origins of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ. The fetal and infant origins of disease. Eur J Clin Invest. 1995;25:457–63.

    Article  CAS  PubMed  Google Scholar 

  2. King H. Epidemiology of glucose intolerance and gestational diabetes in women of childbearing age. Diabetes Care. 1998;21 Suppl 2:B9–13.

    PubMed  Google Scholar 

  3. Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care. 2008;31:1668–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Carr DB, Utzschneider KM, Hull RL, et al. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care. 2006;29:2078–83.

    Article  PubMed  Google Scholar 

  5. Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  CAS  PubMed  Google Scholar 

  6. Barker DJ, Gluckman PD, Godfrey KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–41.

    Article  CAS  PubMed  Google Scholar 

  7. Stein CE, Fall CH, Kumaran K, et al. Fetal growth and coronary heart disease in south India. Lancet. 1996;348:1269–73.

    Article  CAS  PubMed  Google Scholar 

  8. Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vickers MH, Breier BH, Cutfield WS, et al. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83–7.

    CAS  PubMed  Google Scholar 

  10. Phillips DI. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia. 1996;39:1119–22.

    Article  CAS  PubMed  Google Scholar 

  11. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    Article  CAS  PubMed  Google Scholar 

  12. Leon DA, Lithell HO, Vagero D, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ. 1998;317:241–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. de Rooij SR, Painter RC, Holleman F, et al. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr. 2007;86:1219–24.

    PubMed  Google Scholar 

  14. Levitt NS, Lambert EV, Woods D, et al. Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young South African adults: early programming of cortisol axis. J Clin Endocrinol Metab. 2000;85:4611–18.

    CAS  PubMed  Google Scholar 

  15. Yajnik CS. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr. 2004;134:205–10.

    CAS  PubMed  Google Scholar 

  16. Chernausek SD. Update: consequences of abnormal fetal growth. J Clin Endocrinol Metab. 2012;97:689–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Black HR. The paradigm has shifted to systolic blood pressure. J Hum Hypertens. 2004;18 Suppl 2:S3–7.

    Article  PubMed  Google Scholar 

  18. Kingwell BA, Gatzka CD. Arterial stiffness and prediction of cardiovascular risk. J Hypertens. 2002;20:2337–40.

    Article  CAS  PubMed  Google Scholar 

  19. Tzschoppe A, Struwe E, Rascher W, et al. Intrauterine growth restriction (IUGR) is associated with increased leptin synthesis and binding capability in neonates. Clin Endocrinol (Oxf). 2011;74:459–66.

    Article  CAS  Google Scholar 

  20. Spiegelman BM, Choy L, Hotamisligil GS, et al. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem. 1993;268:6823–6.

    CAS  PubMed  Google Scholar 

  21. Tsubahara M, Shoji H, Mori M, et al. Glucose metabolism soon after birth in very premature infants with small- and appropriate-for-gestational-age birth weights. Early Hum Dev. 2012;88:735–8.

    Article  CAS  PubMed  Google Scholar 

  22. Leeson CP, Whincup PH, Cook DG, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation. 1997;96:2233–8.

    Article  CAS  PubMed  Google Scholar 

  23. Goodfellow J, Bellamy MF, Gorman ST, et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res. 1998;40:600–6.

    Article  CAS  PubMed  Google Scholar 

  24. Martin H, Hu J, Gennser G, et al. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation. 2000;102:2739–44.

    Article  CAS  PubMed  Google Scholar 

  25. McAllister AS, Atkinson AB, Johnston GD, et al. Relationship of endothelial function to birth weight in humans. Diabetes Care. 1999;22:2061–6.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkinson IB, Cockcroft JR. Commentary: birthweight arterial stiffness and blood pressure: in search of a unifying hypothesis. Int J Epidemiol. 2004;33:161–2.

    Article  PubMed  Google Scholar 

  27. Antonios TF, Singer DR, Markandu ND, et al. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension. 1999;34:655–8.

    Article  CAS  PubMed  Google Scholar 

  28. Broyd C, Harrison E, Raja M, et al. Association of pulse waveform characteristics with birth weight in young adults. J Hypertens. 2005;23:1391–6.

    Article  CAS  PubMed  Google Scholar 

  29. Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Limesand SW, Rozance PJ, Zerbe GO, et al. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology. 2006;147:1488–97.

    Article  CAS  PubMed  Google Scholar 

  31. Hales CN, Ozanne SE. For debate: Fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure. Diabetologia. 2003;46:1013–19.

    Article  CAS  PubMed  Google Scholar 

  32. Coupe B, Grit I, Hulin P, et al. Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis. PLoS One. 2012;7:e30616.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bar-El Dadon S, Shahar R, Katalan V, et al. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study. Nutrition. 2011;27:973–7.

    Article  CAS  PubMed  Google Scholar 

  34. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54:83–90.

    Article  CAS  PubMed  Google Scholar 

  35. Torrens C, Brawley L, Barker AC, et al. Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J Physiol. 2003;547:77–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lamireau D, Nuyt AM, Hou X, et al. Altered vascular function in fetal programming of hypertension. Stroke. 2002;33:2992–8.

    Article  PubMed  Google Scholar 

  37. Rueda-Clausen CF, Morton JS, Lopaschuk GD, et al. Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc Res. 2011;90:285–94.

    Article  CAS  PubMed  Google Scholar 

  38. Remacle C, Bieswal F, Bol V, et al. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance. Am J Clin Nutr. 2011;94:1846S–52.

    Article  CAS  PubMed  Google Scholar 

  39. Choi GY, Tosh DN, Garg A, et al. Gender-specific programmed hepatic lipid dysregulation in intrauterine growth-restricted offspring. Am J Obstet Gynecol. 2007;196:477 e471–7.

    Google Scholar 

  40. Osterholm EA, Hostinar CE, Gunnar MR. Alterations in stress responses of the hypothalamic-pituitary-adrenal axis in small for gestational age infants. Psychoneuroendocrinology. 2012;37:1719–25.

    Article  CAS  PubMed  Google Scholar 

  41. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gluckman PD, Lillycrop KA, Vickers MH, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A. 2007;104:12796–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab. 2010;21:199–205.

    Article  CAS  PubMed  Google Scholar 

  44. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  CAS  PubMed  Google Scholar 

  45. Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5:401–8.

    Article  CAS  PubMed  Google Scholar 

  46. Diplas AI, Lambertini L, Lee MJ, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4:235–40.

    Article  CAS  PubMed  Google Scholar 

  47. Einstein F, Thompson RF, Bhagat TD, et al. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One. 2010;5:e8887.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Roth CL, Sathyanarayana S. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA). Rev Endocr Metab Disord. 2012;13:129–40.

    Article  PubMed  Google Scholar 

  49. Banister CE, Koestler DC, Maccani MA, et al. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 2011;6:920–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Uzan J, Carbonnel M, Piconne O, et al. Pre-eclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manag. 2011;7:467–74.

    PubMed Central  PubMed  Google Scholar 

  51. Geelhoed JJ, Fraser A, Tilling K, et al. Preeclampsia and gestational hypertension are associated with childhood blood pressure independently of family adiposity measures: the Avon Longitudinal Study of Parents and Children. Circulation. 2010;122:1192–9.

    Article  PubMed  Google Scholar 

  52. Wen X, Triche EW, Hogan JW, et al. Prenatal factors for childhood blood pressure mediated by intrauterine and/or childhood growth? Pediatrics. 2011;127:e713–21.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Jayet PY, Rimoldi SF, Stuber T, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122:488–94.

    Article  PubMed  Google Scholar 

  54. Kajantie E, Eriksson JG, Osmond C, et al. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40:1176–80.

    Article  PubMed  Google Scholar 

  55. Wu CS, Sun Y, Vestergaard M, et al. Preeclampsia and risk for epilepsy in offspring. Pediatrics. 2008;122:1072–8.

    Article  PubMed  Google Scholar 

  56. Tamimi R, Lagiou P, Vatten LJ, et al. Pregnancy hormones, pre-eclampsia, and implications for breast cancer risk in the offspring. Cancer Epidemiol Biomarkers Prev. 2003;12:647–50.

    CAS  PubMed  Google Scholar 

  57. Wu CS, Nohr EA, Bech BH, et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201:269 e1–10.

    Article  Google Scholar 

  58. Davis EF, Lazdam M, Lewandowski AJ, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129:e1552–61.

    Article  PubMed  Google Scholar 

  59. Lawlor DA, Macdonald-Wallis C, Fraser A, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33:335–45.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ogland B, Vatten LJ, Romundstad PR, et al. Pubertal anthropometry in sons and daughters of women with preeclamptic or normotensive pregnancies. Arch Dis Child. 2009;94:855–9.

    Article  CAS  PubMed  Google Scholar 

  61. Ros HS, Lichtenstein P, Ekbom A, et al. Tall or short? Twenty years after preeclampsia exposure in utero: comparisons of final height, body mass index, waist-to-hip ratio, and age at menarche among women, exposed and unexposed to preeclampsia during fetal life. Pediatr Res. 2001;49:763–9.

    Article  CAS  PubMed  Google Scholar 

  62. Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990;335:939–40.

    Article  CAS  PubMed  Google Scholar 

  63. Garoff L, Seppala M. Toxemia of pregnancy: assessment of fetal distress by urinary estriol and circulating human placental lactogen and alpha-fetoprotein levels. Am J Obstet Gynecol. 1976;126:1027–33.

    CAS  PubMed  Google Scholar 

  64. Troisi R, Potischman N, Roberts JM, et al. Maternal serum oestrogen and androgen concentrations in preeclamptic and uncomplicated pregnancies. Int J Epidemiol. 2003;32:455–60.

    Article  PubMed  Google Scholar 

  65. Vatten LJ, Romundstad PR, Odegard RA, et al. Alpha-foetoprotein in umbilical cord in relation to severe pre-eclampsia, birth weight and future breast cancer risk. Br J Cancer. 2002;86:728–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Acromite MT, Mantzoros CS, Leach RE, et al. Androgens in preeclampsia. Am J Obstet Gynecol. 1999;180:60–3.

    Article  CAS  PubMed  Google Scholar 

  67. Ekbom A, Wuu J, Adami HO, et al. Duration of gestation and prostate cancer risk in offspring. Cancer Epidemiol Biomarkers Prev. 2000;9:221–3.

    CAS  PubMed  Google Scholar 

  68. Troisi R, Potischman N, Hoover RN. Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev. 2007;16:1700–12.

    Article  CAS  PubMed  Google Scholar 

  69. Libby G, Murphy DJ, McEwan NF, et al. Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: an intergenerational study from the Walker cohort. Diabetologia. 2007;50:523–30.

    Article  CAS  PubMed  Google Scholar 

  70. Tenhola S, Rahiala E, Martikainen A, et al. Blood pressure, serum lipids, fasting insulin, and adrenal hormones in 12-year-old children born with maternal preeclampsia. J Clin Endocrinol Metab. 2003;88:1217–22.

    Article  CAS  PubMed  Google Scholar 

  71. Badawi N, Kurinczuk JJ, Keogh JM, et al. Antepartum risk factors for newborn encephalopathy: the Western Australian case–control study. BMJ. 1998;317:1549–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. McCarthy FP, Kingdom JC, Kenny LC, et al. Animal models of preeclampsia; uses and limitations. Placenta. 2011;32:413–19.

    Article  CAS  PubMed  Google Scholar 

  73. Huizinga CT, Engelbregt MJ, Rekers-Mombarg LT, et al. Ligation of the uterine artery and early postnatal food restriction – animal models for growth retardation. Horm Res. 2004;62:233–40.

    Article  CAS  PubMed  Google Scholar 

  74. Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90:4299–308.

    Article  CAS  PubMed  Google Scholar 

  75. Cheng MH, Wang PH. Placentation abnormalities in the pathophysiology of preeclampsia. Expert Rev Mol Diagn. 2009;9:37–49.

    Article  PubMed  Google Scholar 

  76. Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57:505–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Luttun A, Carmeliet P. Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J Clin Invest. 2003;111:600–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lu F, Bytautiene E, Tamayo E, et al. Gender-specific effect of overexpression of sFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life. Am J Obstet Gynecol. 2007;197:418 e411–5.

    Article  Google Scholar 

  80. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Van Vliet BN, Chafe LL. Maternal endothelial nitric oxide synthase genotype influences offspring blood pressure and activity in mice. Hypertension. 2007;49:556–62.

    Article  PubMed  Google Scholar 

  82. McMullen S, Langley-Evans SC. Sex-specific effects of prenatal low-protein and carbenoxolone exposure on renal angiotensin receptor expression in rats. Hypertension. 2005;46:1374–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. O’Regan D, Kenyon CJ, Seckl JR, et al. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab. 2004;287:E863–70.

    Article  PubMed  Google Scholar 

  84. Mazzuca MQ, Wlodek ME, Dragomir NM, et al. Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol. 2010;588:1997–2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang Z, Huang Z, Lu G, et al. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring. Am J Physiol Heart Circ Physiol. 2009;296:H1321–8.

    Article  CAS  PubMed  Google Scholar 

  86. Pascoe KC, Wlodek ME, Jones GT. Increased elastic tissue defect formation in the growth restricted Brown Norway rat: a potential link between in utero condition and cardiovascular disease. Pediatr Res. 2008;64:125–30.

    Article  PubMed  Google Scholar 

  87. Akcakus M, Altunay L, Yikilmaz A, et al. The relationship between abdominal aortic intima-media thickness and lipid profile in neonates born to mothers with preeclampsia. J Pediatr Endocrinol Metab. 2010;23:1143–9.

    Article  CAS  PubMed  Google Scholar 

  88. Davis EF, Newton L, Lewandowski AJ, et al. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond). 2012;123:53–72.

    Article  Google Scholar 

  89. Bae S, Xiao Y, Li G, et al. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol. 2003;285:H983–90.

    CAS  PubMed  Google Scholar 

  90. Li G, Xiao Y, Estrella JL, et al. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003;10:265–74.

    Article  CAS  PubMed  Google Scholar 

  91. Patterson AJ, Chen M, Xue Q, et al. Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ Res. 2010;107:365–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Budas GR, Mochly-Rosen D. Mitochondrial protein kinase Cepsilon (PKCepsilon): emerging role in cardiac protection from ischaemic damage. Biochem Soc Trans. 2007;35:1052–4.

    Article  CAS  PubMed  Google Scholar 

  93. Kvehaugen AS, Dechend R, Ramstad HB, et al. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension. 2011;58:63–9.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Zhou Y, He L, et al. Gene delivery of soluble vascular endothelial growth factor receptor-1 (sFlt-1) inhibits intra-plaque angiogenesis and suppresses development of atherosclerotic plaque. Clin Exp Med. 2011;11:113–21.

    Article  PubMed  Google Scholar 

  95. Moyes AJ, Maldonado-Perez D, Gray GA, et al. Enhanced angiogenic capacity of human umbilical vein endothelial cells from women with preeclampsia. Reprod Sci. 2011;18:374–82.

    Article  PubMed  Google Scholar 

  96. Medica I, Kastrin A, Peterlin B. Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2007;131:115–26.

    Article  CAS  PubMed  Google Scholar 

  97. Yu CK, Casas JP, Savvidou MD, et al. Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and development of pre-eclampsia: a case–control study and a meta-analysis. BMC Pregnancy Childbirth. 2006;6:7.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Odom LN, Taylor HS. Environmental induction of the fetal epigenome. Expert Rev Obstet Gynecol. 2010;5:657–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Yue Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, MY., Wang, FF., Pan, JX., Huang, HF. (2014). Adverse Intrauterine Environment and Gamete/Embryo-Fetal Origins of Diseases. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics