Skip to main content

Physiology of Embryonic Development

  • Chapter
  • First Online:
Gamete and Embryo-fetal Origins of Adult Diseases

Abstract

Human embryo development is a complex process. The life of an embryo begins when a male’s spermatozoa makes contact with a woman’s egg. A zygote cell, the very first representation of the fetus, is the result of this fertilization process. Contained within this one cell is the DNA of both the male and female, as well as the blueprint from which the fetus will develop. This chapter reviews some of the basic physiology of embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arushi, Khurana I. Human embryology. 1st ed. New Delhi: CBS Publisher & Distributors Pvt Ltd.; 2010.

    Google Scholar 

  2. Gulyas BJ. A reexamination of cleavage patterns in eutherian mammalian eggs: rotation of blastomere pairs during second cleavage in the rabbit. J Exp Zool. 1975;193:235–48.

    Article  CAS  PubMed  Google Scholar 

  3. Gardner RL. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse. Development. 1997;124:289–301.

    CAS  PubMed  Google Scholar 

  4. Garner W, McLaren A. Cell distribution in chimaeric mouse embryos before implantation. J Embryol Exp Morphol. 1974;32:495–503.

    CAS  PubMed  Google Scholar 

  5. Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell. 1999;96:195–209.

    Article  CAS  PubMed  Google Scholar 

  6. Gross PR, Cousineau GH. Synthesis of spindle-associated proteins in early cleavage. J Cell Biol. 1963;19:260–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Crosby IM, Gandolfi F, Moor RM. Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil. 1988;82:769–75.

    Article  CAS  PubMed  Google Scholar 

  8. Lee S, Gilula NB, Warner AE. Gap junctional communication and compaction during preimplantation stages of mouse development. Cell. 1987;51:851–60.

    Article  CAS  PubMed  Google Scholar 

  9. Levy JB, Johnson MH, Goodall H, et al. The timing of compaction: control of a major developmental transition in mouse early embryogenesis. J Embryol Exp Morphol. 1986;95:213–37.

    CAS  PubMed  Google Scholar 

  10. Handyside AH. Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol. 1980;60:99–116.

    CAS  PubMed  Google Scholar 

  11. Pratt HP, Ziomek CA, Reeve WJ, et al. Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol. 1982;70:113–32.

    CAS  PubMed  Google Scholar 

  12. Reeve WJ, Ziomek CA. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J Embryol Exp Morphol. 1981;62:339–50.

    CAS  PubMed  Google Scholar 

  13. Sutherland AE, Speed TP, Calarco PG. Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol. 1990;137:13–25.

    Article  CAS  PubMed  Google Scholar 

  14. Carlson BM. Foundations of embryology. 6th ed. New York: McGraw-Hill; 1996.

    Google Scholar 

  15. Barlow PW, Sherman MI. The biochemistry of differentiation of mouse trophoblast: studies on polyploidy. J Embryol Exp Morphol. 1972;27:447–65.

    CAS  PubMed  Google Scholar 

  16. Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004;15:583–97.

    Article  CAS  PubMed  Google Scholar 

  17. Marikawa Y, Alarcón VB. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev. 2009;76:1019–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Müntener M, Hsu YC. Development of trophoblast and placenta of the mouse. A reinvestigation with regard to the in vitro culture of mouse trophoblast and placenta. Acta Anat (Basel). 1977;98:241–52.

    Article  Google Scholar 

  19. Fleming TP. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol. 1987;119:520–31.

    Article  CAS  PubMed  Google Scholar 

  20. Pijnenborg R, Robertson WB, Brosens I, et al. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta. 1981;2:71–91.

    Article  CAS  PubMed  Google Scholar 

  21. Ziomek CA, Johnson MH. The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres. Dev Biol. 1982;91:440–7.

    Article  CAS  PubMed  Google Scholar 

  22. Yamanaka Y, Ralston A, Stephenson RO, et al. Cell and molecular regulation of the mouse blastocyst. Dev Dyn. 2006;235:2301–14.

    Article  CAS  PubMed  Google Scholar 

  23. Goto T, Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev. 1998;62:362–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–83.

    Article  CAS  PubMed  Google Scholar 

  25. Garbutt CL, Johnson MH, George MA. When and how does cell division order influence cell allocation to the inner cell mass of the mouse blastocyst? Development. 1987;100:325–32.

    CAS  PubMed  Google Scholar 

  26. Gurdon JB, Byrne JA. The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A. 2003;100:8048–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smith JM. The theory of evolution. Cambridge: Cambridge University Press; 1993.

    Google Scholar 

  28. Gibert SF. Developmental biology. Sunderland: Sinauer Associates, Inc.; 2000.

    Google Scholar 

  29. Williams GC. Adaptation and natural selection. Princeton: Princeton University Press; 1996.

    Google Scholar 

  30. Gurdon JB, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50.

    CAS  PubMed  Google Scholar 

  31. Sander K, Faessler PE. Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology insights that generated a key concept in developmental biology. Int J Dev Biol. 2001;45:1–11.

    CAS  PubMed  Google Scholar 

  32. Wolpert L, Jessell T, Lawrence P, et al. Principles of development. 3rd ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  33. Davidson EH. Gene activity in early development. 2nd ed. New York: Academic; 1976. p. 452.

    Google Scholar 

  34. Gandolfi TA, Gandolfi F. The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology. 2001;55:1255–76.

    Article  CAS  PubMed  Google Scholar 

  35. Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8:87–96.

    Article  CAS  PubMed  Google Scholar 

  36. Biggers JD, Borland RM. Physiological aspects of growth and development of the preimplantation mammalian embryo. Annu Rev Physiol. 1976;38:95–119.

    Article  CAS  PubMed  Google Scholar 

  37. Dworkin MB, Dworkin-Rastl E. Functions of maternal mRNA in early development. Mol Reprod Dev. 1990;26:261–97.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Chung YG, deVries WN, Struwe M, Latham KE. Role of protein synthesis in the development of a transcriptionally permissive state in one-cell stage mouse embryos. Biol Reprod. 2001;65:748–54.

    Article  CAS  PubMed  Google Scholar 

  39. Bao S, Obata Y, Carroll J, et al. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod. 2000;62:616–21.

    Article  CAS  PubMed  Google Scholar 

  40. Allegrucci C, Thurston A, Lucas E, et al. Epigenetics and the germline. Reproduction. 2005;129:137–49.

    Article  CAS  PubMed  Google Scholar 

  41. Tada M, Tada T, Lefebvre L, et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997;16:6510–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Simon I, Tenzen T, Reubinoff BE, et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 1999;401:929–32.

    Article  CAS  PubMed  Google Scholar 

  43. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    Article  CAS  PubMed  Google Scholar 

  44. Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem. 2002;277:5285–9.

    Article  CAS  PubMed  Google Scholar 

  45. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  46. DiZio SM, Tasca RJ. Sodium-dependent amino acid transport in preimplantation mouse embryos: III. Na+-K+-ATPase-linked mechanism in blastocysts. Dev Biol. 1977;59:198–205.

    Article  CAS  PubMed  Google Scholar 

  47. Johansson M, Jansson T, Powell TL. Na(+)-K(+)-ATPase is distributed to microvillous and basal membrane of the syncytiotrophoblast in human placenta. Am J Physiol Regul Integr Comp Physiol. 2000;279:R287–94.

    CAS  PubMed  Google Scholar 

  48. Vu TK, Liu RW, Haaksma CJ, Tomasek JJ, et al. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem. 1997;272:31315–20.

    Article  CAS  PubMed  Google Scholar 

  49. Perona RM, Wassarman PM. Mouse blastocysts hatch in vitro by using a trypsin-like proteinase associated with cells of mural trophectoderm. Dev Biol. 1986;114:42–52.

    Article  CAS  PubMed  Google Scholar 

  50. Das SK, Wang XN, Paria BC, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120:1071–83.

    CAS  PubMed  Google Scholar 

  51. Aplin JD, Seif MW, Graham RA, et al. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle. Ann N Y Acad Sci. 1994;734:103–21.

    Article  CAS  PubMed  Google Scholar 

  52. Sidhu SS, Kimber SJ. Hormonal control of H-type alpha(1–2)fucosyltransferase messenger ribonucleic acid in the mouse uterus. Biol Reprod. 1999;60(1):147–57.

    Article  CAS  PubMed  Google Scholar 

  53. Gilbert SF. The epidermis and the origin of cutaneous structures. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  54. Gilbert SF. Comparative embryology. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  55. Gilbert SF. Early mammalian development. In: Developmental biology. 6th ed. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  56. Hall BK. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev. 2000;2:3–5.

    Article  CAS  PubMed  Google Scholar 

  57. Moore KL. The developing human. 2nd ed. Philadelphia: Saunders; 1977.

    Google Scholar 

  58. Moore KL. The developing human: clinically oriented embryology. 4th ed. Philadelphia: Saunders; 1988.

    Google Scholar 

  59. Moore KL. Before we are born. Basic embryology and birth defects. Philadelphia: Saunders; 1983.

    Google Scholar 

  60. Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497–512.

    Article  CAS  PubMed  Google Scholar 

  61. Jansson T, Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? A review. Placenta. 2006;27:S91.

    Article  PubMed  Google Scholar 

  62. Sipes SL, Weiner CP, Wenstrom KD, et al. The association between fetal karyotype and mean corpuscular volume. Am J Obstet Gynecol. 1991;165:1371–6.

    Article  CAS  PubMed  Google Scholar 

  63. Pearson HA. Recent advances in hematology. J Pediatr. 1966;69:466–79.

    Article  CAS  PubMed  Google Scholar 

  64. Weiner CP, Sipes SL, Wenstrom K. The effect of fetal age upon normal fetal laboratory values and venous pressure. Obstet Gynecol. 1992;79:713–18.

    CAS  PubMed  Google Scholar 

  65. Fryer AA, Jones P, Strange R, et al. Plasma protein levels in normal human fetuses: 13 to 41 weeks’ gestation. Br J Obstet Gynaecol. 1993;100:850–5.

    Article  CAS  PubMed  Google Scholar 

  66. Foley ME, Isherwood DM, McNicol GP. Viscosity, hematocrit, fibrinogen and plasma proteins in maternal and cord blood. Br J Obstet Gynaecol. 1978;85:500–4.

    Article  CAS  PubMed  Google Scholar 

  67. Koldovsky O, Heringova A, Jirsova V, et al. Transport of glucose against a concentration gradient in everted sacs of jejunum and ileum of human fetuses. Gastroenterology. 1965;48:185–7.

    CAS  PubMed  Google Scholar 

  68. Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.

    CAS  PubMed  Google Scholar 

  69. Pritchard JA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol. 1966;28:606–10.

    CAS  PubMed  Google Scholar 

  70. Lebenthal E, Lee PC. Review article. Interactions of determinants of the ontogeny of the gastrointestinal tract: a unified concept. Pediatr Res. 1983;1:19–24.

    Article  Google Scholar 

  71. Bashore RA, Smith F, Schenker S. Placental transfer and disposition of bilirubin in the pregnant monkey. Am J Obstet Gynecol. 1969;103:950–8.

    CAS  PubMed  Google Scholar 

  72. Adam PAJ, Teramo K, Raiha N, et al. Human fetal insulin metabolism early in gestation: response to acute elevation of the fetal glucose concentration and placental transfer of human insulin-I-131. Diabetes. 1969;18:409–16.

    Article  CAS  PubMed  Google Scholar 

  73. Obenshain SS, Adam PAJ, King KC, et al. Human fetal insulin response to sustained maternal hyperglycemia. N Engl J Med. 1970;283:566–70.

    Article  CAS  PubMed  Google Scholar 

  74. Werlin SL. Exocrine pancreas. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Philadelphia: Saunders; 1992. p. 1047.

    Google Scholar 

  75. Davis MM, Hodes ME, Munsick RA, et al. Pancreatic amylase expression in human pancreatic development. Hybridoma. 1986;5:137–45.

    Article  CAS  PubMed  Google Scholar 

  76. Saxén L, Sariola H. Early organogenesis of the kidney. Pediatr Nephrol. 1987;1:385–92.

    Article  PubMed  Google Scholar 

  77. Geelhoed JJ, Verburg BO, Nauta J, et al. Tracking and determinants of kidney size from fetal life until the age of 2 years: the Generation R Study. Am J Kidney. 2009;53(2):248–58.

    Article  Google Scholar 

  78. Smith FG, Nakamura KT, Segar JL et al. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology, vol 2, Chap. 114. Philadelphia: Saunders; 1992. p. 1187.

    Google Scholar 

  79. Wladimiroff JW, Campbell S. Fetal urine-production rates in normal and complicated pregnancy. Lancet. 1974;1:151–4.

    Article  CAS  PubMed  Google Scholar 

  80. Chard T, Hudson CN, Edwards CRW, et al. Release of oxytocin and vasopressin by the human foetus during labour. Nature. 1971;234:352–4.

    Article  CAS  PubMed  Google Scholar 

  81. Polin RA, Husain MK, James LS, et al. High vasopressin concentrations in human umbilical cord blood—lack of correlation with stress. J Perinat Med. 1977;5:114–19.

    Article  CAS  PubMed  Google Scholar 

  82. Ballabio M, Nicolini U, Jowett T, et al. Maturation of thyroid function in normal human foetuses. Clin Endocrinol. 1989;31:565–71.

    Article  CAS  Google Scholar 

  83. Thorpe-Beeston JG, Nicolaides KH, Felton CV, et al. Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med. 1991;324:532–6.

    Article  CAS  PubMed  Google Scholar 

  84. Wenstrom KD, Weiner CP, Williamson RA, et al. Prenatal diagnosis of fetal hyperthyroidism using funipuncture. Obstet Gynecol. 1990;76:513–17.

    CAS  PubMed  Google Scholar 

  85. Vulsma T, Gons MH, De Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6.

    Article  CAS  PubMed  Google Scholar 

  86. Koff AK. Development of the vagina in the human fetus. Contrib Embryol. 1933;24:59–91.

    CAS  PubMed  Google Scholar 

  87. Konishi I, Fujii S, Okamura H, et al. Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J Anat. 1986;148:121–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Bozzetti P, Ferrari MM, Marconi AM, et al. The relationship of maternal and fetal glucose concentrations in the human from midgestation until term. Metabolism. 1988;37:358–63.

    Article  CAS  PubMed  Google Scholar 

  89. Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in pregnancy. Am J Obstet Gynecol. 2006;193(6):1537–45.

    Article  Google Scholar 

  90. Grisaru-Granovsy S, Samueloff A, Elstein D. The role of leptin in fetal growth: a short review from conception to delivery. Eur J Obstet Gynecol Reprod Biol. 2008;136(2):146–50.

    Article  Google Scholar 

  91. Kimura RE. Lipid metabolism in the fetal-placental unit. In: Cowett RM, editor. Principles of perinatal-neonatal metabolism. New York: Springer; 1991. p. 291.

    Google Scholar 

  92. Lemons JA. Fetal placental nitrogen metabolism. Semin Perinatol. 1979;3:177–90.

    CAS  PubMed  Google Scholar 

  93. Morriss FH Jr, Boyd RDH, Manhendren D. Placental transport. In: Knobil E, Neill J, editors. The physiology of reproduction, vol II. New York: Raven; 1994. p. 813.

    Google Scholar 

  94. Fowden AL, Ward JW, Wooding FP, et al. Programming placental nutrient transport capacity. J Physiol. 2006;572(1):5–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Jansson T, Powell TL. IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? – a review. Placenta. 2006;27:S91–7.

    Article  PubMed  Google Scholar 

  96. Gitlin D, Kumate J, Morales C, et al. The turnover of amniotic fluid protein in the human conceptus. Am J Obstet Gynecol. 1972;113:632–45.

    CAS  PubMed  Google Scholar 

  97. Abbas SK, Pickard DW, Illingworth D, et al. Measurement of PTH-rP protein in extracts of fetal parathyroid glands and placental membranes. J Endocrinol. 1990;124:319–25.

    Article  CAS  PubMed  Google Scholar 

  98. Hellman P, Ridefelt P, Juhlin C, et al. Parathyroid-like regulation of parathyroid hormone related protein release and cytoplasmic calcium in cytotrophoblast cells of human placenta. Arch Biochem Biophys. 1992;293:174–80.

    Article  CAS  PubMed  Google Scholar 

  99. Gilbert WM, Brace RA. Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin Perinatol. 1993;17:150–7.

    CAS  PubMed  Google Scholar 

  100. Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am Obstet Gynecol. 1989;161:382–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Xia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, AX., Liu, XM., Zhang, YL., Huang, HF., Xu, CM. (2014). Physiology of Embryonic Development. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics