Skip to main content

Abstract

Besides the presentation and conclusions, the chapter is divided into two equally important sections. The first one describes the modern development of atomic and molecular structure, emphasising some of the philosophical problems that have been taken, and those that have to be faced in its understanding. The second discusses the alternative conceptions and difficulties of students of different educational levels and also the different approaches to its historical or philosophical teaching. Finally, we recognise the necessity for science teachers to assume a specific historical-philosophical position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Moreno-Ramírez et al. ( 2010).

  2. 2.

    In German he says ‘Die Energie eines Resonators ändert sich durch Absorption und Emision sprungweise, und zwar ein ganzzahliges Vielfache von (R/N)βν’ (Einstein 1906, p. 202).

  3. 3.

    See, for example, Lee et al. (1993), Novick and Nussbaum (1978, 1981), Nussbaum (1985), Valanides (2000), and Wightman et al. (1987).

  4. 4.

    As can be seen in Birk and Kurtz (1999), Boo (1998), Furió and Calatayud (1996), Griffiths and Preston (1992), Hund (1977), Kutzelnigg (1984), Magnasco (2004), Özmen (2004), and Sutcliffe (1996).

  5. 5.

    For example, Coll and Treagust (2002), Niaz (2001), and Peterson et al. (1989).

  6. 6.

    Such as in Coll and Treagust (2003a) and De Posada (1997, 1999).

  7. 7.

    See, for example, Butts and Smith (1987), Coll and Treagust (2003b), and Taber (1994, 1997).

  8. 8.

    Such as Dobson et al. (2000), Petri and Niedderer (1998), Shiland (1995, 1997), and Tsaparlis and Papaphotis (2002, 2009).

  9. 9.

    For example, Hadzidaki et al. (2000), Johnston et al. (1998), Kalkanis et al. (2003), Michelini et al. (2000), Paoloni (1982), and Wittmann et al. (2002).

  10. 10.

    As can be seen in Ardac (2002), Melrose and Scerri (1996), Niaz and Fernández (2008), and Scerri (1991).

  11. 11.

    For example, Cervellati and Perugini (1981), Conceicao and Koscinski (2003), Ogilvie (1994), Scerri (2000a), Taber (2002a, b; 2005), and Tsaparlis (1997a).

  12. 12.

    For example, Buchwald and Warwick (2001), Giunta (2010), Marinacci (1995), Nye (1993), Snow (1981), and Toulmin and Goodfield (1962).

References

  • Achinstein, P. (2001). Who really discovered the electron? In Buchwald J.Z. & Warwick A. (eds.) Histories of the Electron. The Birth of Microphysics, (Chapter 13 pp. 403–424), Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Adúriz-Bravo A. (2012) A ‘Semantic’ View of Scientific Models for Science Education, Science & Education, Online First, 17 January.

    Google Scholar 

  • Anderson, P. W. (1972). More Is Different, Science, 177(4047), 393–396. Aug. 4.

    Google Scholar 

  • Arabatzis, T. (2001). The Zeeman Effect and the Discovery of the Electron? In Buchwald J.Z. & Warwick A. (eds.) Histories of the Electron. The Birth of Microphysics, (Chapter 5 pp. 171–193), Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Ardac, D. (2002). Solving quantum number problems: An examination of novice performance in terms of conceptual based requirements, Journal of Chemical Education, 79(4), 510–3.

    Google Scholar 

  • Atkins, P., de Paula, J., & Friedman, R. (2008). Quanta, Matter and Change: A Molecular Approach to Physical Chemistry, Oxford: Oxford University Press.

    Google Scholar 

  • Ayar, M., & Yalvac, B. (2010). A sociological standpoint to authentic scientific practices and its role in school science teaching, Ahi Evran Uni. Kirsehir Journal of Education (KEFAD) 11, 113–127.

    Google Scholar 

  • Baggott, J. (2011). The Quantum Story. A History in 40 Moments. Oxford: Oxford University Press.

    Google Scholar 

  • Bensaude-Vincent, B. (1999). Atomism and Positivism: A legend about French Chemistry, Annals of Science, 56, 81–94.

    Google Scholar 

  • Bent, H. A. (1984). Should orbitals be X-rated in beginning chemistry courses? Journal of Chemical Education, 61(5), 421–423.

    Google Scholar 

  • Birk, J., & Kurtz, M. (1999). Effect of experience on retention and elimination of misconceptions about molecular structure and bonding, Journal of Chemical Education, 76(1), 124–128.

    Google Scholar 

  • Bishop, D. M. (1973). Group theory and chemistry, Oxford, UK: Clarendon Press.

    Google Scholar 

  • Boo, H. K. (1998). Students’ Understandings of Chemical Bonds and the Energetics of Chemical Reactions, Journal of Research in Science Teaching, 35(5), 569–581.

    Google Scholar 

  • Branch, G.E.K. (1984). Gilbert Newton Lewis, 1875–1946, Journal of Chemical Education, 61(1), 18–21.

    Google Scholar 

  • Bucat, R., & Mocerino, M. (2009). Learning at the Sub-micro Level: Structural Representations, in Gilbert, J. K. & Treagust, D. (Eds.) Multiple Representations in Chemical Education, (Chapter 1, pp. 11–29), Secaucus, NJ, USA: Springer.

    Google Scholar 

  • Buchwald, J. Z. & Warwick, A. (ed) (2001). Histories of the electron. The Birth of microphysics, Cambridge Massachusetts: The MIT Press.

    Google Scholar 

  • Butts, B., & Smith, R. (1987). HSC chemistry students’ understanding of the structure and properties of molecular and ionic compounds, Research in Science Education, 17, 192–201.

    Google Scholar 

  • Campbell, J. A. (1962). Chemical Education Material Study. Berkeley, CA, USA: Lawrence Hall of Science.

    Google Scholar 

  • Cervellati, R. & Perugini, D. (1981). The understanding of the atomic orbital concept by Italian high school students, Journal of Chemical Education, 58(7), 568–9.

    Google Scholar 

  • Chalmers, A. (1998). Retracing the Ancient Steps to atomic theory, Science & Education, 7(1), 69–84.

    Google Scholar 

  • Chamizo, J.A. (1992). El maestro de lo infinitamente pequeño. John Dalton [The master of the infinitely small. John Dalton], México: Conaculta-Pangea.

    Google Scholar 

  • Chamizo, J.A. (2001) El curriculum oculto en la enseñanza de la química, Educación Química, 12(4), 194–198.

    Google Scholar 

  • Chamizo, J. A. (2007). Teaching modern chemistry through ‘historical recurrent teaching models’, Science & Education, 16(2), 197–216.

    Google Scholar 

  • Chamizo, J.A. (2011). A new definition of Models and Modelling for chemistry Teaching, Science & Education OnLine First 01 November, special issue on [Philosophical Considerations in Teaching of Chemistry] edited by Sibel Erduran.

    Google Scholar 

  • Chamizo, J.A. (2012). Heuristic Diagrams as a Tool to teach History of Science, Science & Education, 21(5), 745–762. OnLine First 23th August, 2011.

    Google Scholar 

  • Christie, M. & Christie, J. R. (2000). ‘Laws’ and ‘Theories’ in Chemistry Do not Obey The rules in Bhushan N. & Rosenfeld S. (ed) Of Minds and Molecules. New Philosophical Perspectives on Chemistry, New York: Oxford University Press.

    Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2002). Exploring tertiary students’ understanding of covalent bonding, Research in Science and Technological Education, 20, 241–267.

    Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2003a). Learners’ mental models of metallic bonding: A cross-age study, Science Education, 87(5), 685–707.

    Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2003b). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding, Journal of Research in Science Teaching, 40(5), 464–486.

    Google Scholar 

  • Conceicao, J., & Koscinski, J. T. (2003). Exploring Atomic and Molecular Orbital in Freshman Chemistry using Computational Chemistry, The Chemical Educator, 8, 378–382.

    Google Scholar 

  • Cotton, F. A. (1963). Chemical Applications of Group Theory, New York: John Wiley & Sons.

    Google Scholar 

  • Cruz, D., Chamizo, J. A. y Garritz, A. (1986). Estructura atómica. Un enfoque químico [Atomic structure. A chemical approach], Wilmington, DE, USA: Addison Wesley Iberoamericana.

    Google Scholar 

  • De Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: structure and evolution, Science Education, 81(4), 445–467.

    Google Scholar 

  • De Posada, J. M. (1999). The presentation of metallic bonding in high school science textbooks during three decades: science educational reforms and substantive changes of tendencies, Science Education, 83, 423–447.

    Google Scholar 

  • Develaki, M. (2007). ‘The Model-Based view of Scientific Theories and the structuring of school science, Science & Education, 16(7–8), 725–749.

    Google Scholar 

  • Didis, N. & SakirErkoc, S. (2009). ‘History of Science for Science Courses: “Spin” Example from Physics, Latin American Journal of Physics Education, 3, 9–12.

    Google Scholar 

  • Dirac, P.A.M. (1929). Quantum Mechanics of Many-Electron Systems, Proceedings of the Royal Society (London) A123, 714–733.

    Google Scholar 

  • Dobson, K., Lawrence, I., & Britton, P. (2000). The A to B of quantum physics, Physics Education, 35, 400–5.

    Google Scholar 

  • Doyle M. (ed) (1993). Historical Science Experiments on File, Facts on File, New York.

    Google Scholar 

  • Duschl, R. A. (1994). Research on the History and Philosophy of Science, in Gabel D. (Ed.) Handbook of Research on Science Teaching and Learning, (pp. 443–465) New York: MacMillan.

    Google Scholar 

  • Early, J. E. (2004). Would Introductory Chemistry Courses work better with a new Philosophical basis? Foundations of Chemistry, 6, 137–160.

    Google Scholar 

  • Echeverria, J. Introducción a la Metodología de la Ciencia, [Introduction to Science’s Methodology] Madrid: Cátedra, 2003.

    Google Scholar 

  • Eggen, P.O., Kvittingen, L., Lykknes, A., & Wittje, R. (2012). Reconstructing Iconic Experiments on Electrochemistry: Experiences from a History of Science Course. Science & Education, 21, 179–189.

    Google Scholar 

  • Einstein, A. (1906). Zur Theorie der Lichterzeugung und Lichtabsorption, Annals of Physics, 325, 199–206.

    Google Scholar 

  • Einstein, A. (1909). Zum gegenwärtigen Stand des Strahlungsproblems, Phys. Zeitschr. 10, 185–193.

    Google Scholar 

  • Einstein, A. (1926; 1944; 1948). Letters to Max Born; The Born-Einstein Letters, translated by Irene Born, New York: Walker and Company, 1971. Taken from the URL http://www.spaceandmotion.com/quantum-theory-albert-einstein-quotes.htm

  • Erduran, S., & Scerri, E. (2002). ‘The nature of chemical knowledge and chemical education’, in Gilbert J.K. et al. (eds.) Chemical Education: Towards Research-based Practice, Kluwer, Dordrecht.

    Google Scholar 

  • Erduran, S. (2005). Applying the Philosophical Concept of Reduction to the Chemistry of Water: Implications for Chemical Education, Science & Education, 14: 161–171.

    Google Scholar 

  • Feldman, B. (2001). The Nobel Prize: A History of Genius, Controversy, and Prestige, New York, USA: Arcade Publishing, Reed Business Information, Inc.

    Google Scholar 

  • Feynman, R. (1985). The Strange Theory of Light and Matter. London: Penguin.

    Google Scholar 

  • Furió, C. & Calatayud, M. L. (1996). Difficulties with the Geometry and Polarity of Molecules. Beyond Misconceptions, Journal of Chemical Education, 73(1), 36–41.

    Google Scholar 

  • Gagliardi, R. (1988) Cómo utilizar la historia de las ciencias en la enseñanza de las ciencias, [How to use history of sciences in the teaching of sciences], Enseñanza de las Ciencias, 6, 291–296.

    Google Scholar 

  • Garritz, A. (2013). Teaching the Philosophical Interpretations of Quantum Mechanics and Quantum Chemistry through Controversies. Accepted for publication in the special issue on [Philosophical Considerations in Teaching of Chemistry] edited by Sibel Erduran, Science & Education, 22(7), 1787–1808.

    Google Scholar 

  • Gault, C. (1991) History of science, individual development and science teaching, Research in Science Education, 21, 133–140.

    Google Scholar 

  • Gell-Mann, M. (1994). The Quark and the Jaguar: adventures in the simple and the complex, New York, USA: Freeman.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws, Chicago, USA: University of Chicago Press.

    Google Scholar 

  • Gilbert, J. K. (2006). On the Nature of “Context” in Chemical Education, International Journal of Science Education, 28(9), 957–976.

    Google Scholar 

  • Gillespie, R. J. (1991). What is wrong with the general chemistry course? Journal of Chemical Education, 68(3), 192–4.

    Google Scholar 

  • Giunta, C. (2010). Atoms in Chemistry: From Dalton’s predecessors to Complex Atoms and Beyond, American Chemical Society-Oxford University Press, Washington.

    Google Scholar 

  • Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules, Journal of Research in Science Teaching, 29, 611–628.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in scienceconceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822.

    Google Scholar 

  • Hacking, I. (1983). Representing and Intervening, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hadzidaki, P., Kalkanis, G. & Stavrou, D. (2000). Quantum mechanics: A systemic component of the modern physics paradigm, Physics Education, 35, 386–392.

    Google Scholar 

  • Hargittai, M. & Hargittai, I. (2009). Group Symmetry through the Eyes of a Chemist, 3rd edition, Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Harré, R. (2004). Modelling: Gateway to the Unknown, Amsterdam: Elsevier.

    Google Scholar 

  • Harris, D. C. & Bertolucci, M. D. (1978). Symmetry and spectroscopy. An introduction to vibrational and electronic spectroscopy, New York: Dover.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching science, Science Education, 80, 509–534.

    Google Scholar 

  • Hawkes, S. J. (1992). Why should they know that? Journal of Chemical Education, 69(3), 178–181.

    Google Scholar 

  • Heilbron, J. L. & Kuhn, T. S. (1969). The Genesis of the Bohr Atom, Historical Studies in the Physical Sciences. 1(3–4), 211–290.

    Google Scholar 

  • Herrestein-Smith, B. (1981). Narrative Versions, Narrative Theories. In W. Mitchel (Ed.), On Narrative, (pp 209–232) Chicago: University of Chicago Press.

    Google Scholar 

  • Hoffmann, R. (1998) Qualitative thinking in the age of modern computational chemistry-or what Liones Salem knows, Journal of Molecular Structure, 424: 1–6

    Google Scholar 

  • Hohenberg, P. & Kohn, W. (1964). Inhomogeneous electron gas, Physical Review, 136, B864–71.

    Google Scholar 

  • Holbrow, C. H., Amato, J. C., Galvez, E. J. & Lloyd, J. N. (1995). Modernizing Introductory Physics, American Journal of Physics, 63, 1078–1090.

    Google Scholar 

  • Hund, F. (1977). Early History of the Quantum Mechanical Treatment of the Chemical Bond, Angewandte Chemie, International Edition in English, 16, 87–91.

    Google Scholar 

  • Husbands, C. (2003). What is history teaching? Language, ideas and meaning in learning about the past. Buckingham: Open University Press.

    Google Scholar 

  • Izquierdo, M. & Adúriz, A. (2009). Physical construction of the chemical atom: Is it Convenient to go All the Way Back? Science & Education, 18(3–4), 443–455.

    Google Scholar 

  • Izquierdo, M. (2010). La transformación del átomo químico en una partícula física ¿se puede realizar el proceso inverso? In Chamizo J.A. (ed) Historia y Filosofía de la Química [History and philosophy of chemistry], (pp 195–209) México: Siglo XXI-UNAM.

    Google Scholar 

  • Jensen, W. B. (1980). The Lewis acid–base concepts, New York, Wiley.

    Google Scholar 

  • Jensen, W. B. (1998). Logic, History, and the Chemistry Textbook. I. Does Chemistry Have a Logical Structure? Journal of Chemical Education, 75(6), 679–687; II. Can We Unmuddle the Chemistry Textbook? 75(7), 817–828; III. One Chemical Revolution or Three? 75(8), 961–969.

    Google Scholar 

  • Jensen, W.B (ed) (2002). Mendeleev on the Periodic Law. Selected Writings, 1869–1905, New York, Dover.

    Google Scholar 

  • Jensen, W.B. (2010). Four Centuries of Atomic Theory in Giunta C. (ed) Atoms in Chemistry: From Dalton’s predecessors to Complex Atoms and Beyond, American Chemical Society-Oxford University Press, Washington.

    Google Scholar 

  • Jensen, W. P., Palenik, G. J., & Suh, I. (2003). The History of Molecular Structure Determination Viewed through the Nobel Prizes, Journal of Chemical Education, 80(7), 753–761.

    Google Scholar 

  • Johnston, I. D., Crawford, K., & Fletcher, P. R. (1998). Student difficulties in learning quantum mechanics, International Journal of Science Education, 20(5), 427–446.

    Google Scholar 

  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: some challenges in the case of ‘the atom, International Journal of Science Education, 22(9), 993–1009.

    Google Scholar 

  • Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts, Science Education, 87, 257–280.

    Google Scholar 

  • Karakostas, V. & Hadzidaki, P. (2005). Realism vs. Constructivism in Contemporary Physics: The Impact of the Debate on the Understanding of Quantum Theory and its Instructional Process, Science & Education, 14(7–8), 607–629.

    Google Scholar 

  • Kauffman, G. B. & Kauffman, L. M. (1996). An Interview with Linus Pauling, Journal of Chemical Education, 73(1), 29–32.

    Google Scholar 

  • Kauffman, G. B. (1999). From Triads to Catalysis: Johann Wolfgang Döbereiner (1780–1849) on the 150th Anniversary of His Death, The Chemical Educator, 4, 186–197.

    Google Scholar 

  • Kauffman, G. B. (2004). Sir William Ramsay: Noble Gas Pioneer. On the 100th Anniversary of His Nobel Prize, The Chemical Educator, 9, 378–383.

    Google Scholar 

  • Kauffman, G. B. (2006). Radioactivity and Isotopes: A Retrospective View of Frederick Soddy (1877.1956) on the 50th Anniversary of His Death, The Chemical Educator, 11, 289–297.

    Google Scholar 

  • Kauffman, G. B. (2010). The 150th Anniversary of the First International Congress of Chemists, Karlsruhe, Germany, September 3–5, 1860, The Chemical Educator, 15, 309–320.

    Google Scholar 

  • Klassen, S. (2007). The Construction and Analysis of a Science Story: A Proposed Methodology, Proccedings of the International History and Philosophy of Science Teaching Group Conference, Calgary, Canada.

    Google Scholar 

  • Klassen, S. (2008). The Photoelectric Effect: Rehabilitating the Story for the Physics Classroom’ Proceedings of the Second International Conference on Story in Science Teaching, Munich, Germany.

    Google Scholar 

  • Kleppner, D., & Jackiw, R. (2000). One Hundred Years of Quantum Physics, Science, 289(5481), 893–898.

    Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects, Physical Review,140, A1133–8.

    Google Scholar 

  • Kuhn, T. S. (1969). The structure of scientific revolutions, Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. S. (1978). Black-Body Theory and the Quantum Discontinuity 1894–1912, Oxford, UK: Oxford University Press.

    Google Scholar 

  • Kutzelnigg, W. (1984). Chemical Bonding in Higher Main Group Elements, Angew. Chem. Int. Ed. Engl. 23, 272–295.

    Google Scholar 

  • Langmuir, I. (1919). The Arrangement of Electrons in Atoms and Molecules, J.Am. Chem.Soc, 41, 868–934

    Google Scholar 

  • Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems, American Journal of Physics, 69, 655–701.

    Google Scholar 

  • Laudan, L. (1997). Progress and its Problems: Toward a theory of scientific growth, Berkeley: University of California Press.

    Google Scholar 

  • Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T.D. (1993). Changing Middle School Student’s Conception of Matter and Molecules, Journal of Research in Science Teaching, 30(3), 249–270.

    Google Scholar 

  • Lewis, G. N. (1923). Valence and the Structure of Atoms and Molecules, New York: Dover.

    Google Scholar 

  • Lombardi, O. & Labarca, M. (2005). The Ontological Autonomy of The Chemical World, Foundations of CHemistry, 7, 125–148.

    Google Scholar 

  • Martin B. & Richards E. (1995). Scientific knowledge, controversy, and public decision-making, in Published in Jasanoff, S., Markle, G.E., Petersen, J.C. & Pinch T. (eds.), Handbook of Science and Technology Studies (Newbury Park, CA: Sage.

    Google Scholar 

  • Matthews, M. R. (1994/2014). Science teaching: The role of history and philosophy of science. London: Routledge.

    Google Scholar 

  • Matthews, M.R. (1992). History, Philosophy and Science Teaching: The Present Rapprochement, Science & Education 1(1), 11–48.

    Google Scholar 

  • Magnasco, V. (2004). A Model for the Chemical Bond, Journal of Chemical Education, 81(3), 427–435.

    Google Scholar 

  • Marinacci, B. (1995) (Ed) Linus Pauling in his own words, Simon&Schuster, New York

    Google Scholar 

  • Melrose, M. P., & Scerri, E. R. (1996). Why the 4s Orbital Is Occupied before the 3d, Journal of Chemical Education, 73(6), 498–503.

    Google Scholar 

  • Metz, D., Klassen, S., Mcmillan, B., Clough, M., & Olson, J. (2007). Building a Foundation for the Use of Historical Narratives, Science & Education, 16(3–5), 313–334.

    Google Scholar 

  • Morrison M. (2001). History and Metaphysics: On the Reality of Spin, In Buchwald J.Z. & Warwick A. (eds.) Histories of the Electron. The Birth of Microphysics, (Chapter 14 pp. 425–450), Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2000). Proposal for quantum physics in secondary school, Physics Education, 35(6), 406–410.

    Google Scholar 

  • Moreno-Ramírez, J. E., Gallego-Badillo, R. and Pérez-Miranda, R. (2010). El modelo semicuántico de Bohr en los libros de texto [The semi-quantum Bohr’s model in textbooks], Ciência & Educação, 16(3), 611–629.

    Google Scholar 

  • Nachtrieb N.H. (1975) Interview with Robert S. Mulliken, Journal of Chemical Education, 52(9), 560–563.

    Google Scholar 

  • Nash, L. K. (1957). “The Atomic-Molecular Theory.” In James Bryant Conant (Ed.) Harvard Case Histories in Experimental Science, Vol. 1. Cambridge, MA, USA: Harvard University Press.

    Google Scholar 

  • Niaz, M. (2000). The oil drop experiment: a rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks, Journal of Research in Science Teaching, 37(5), 480–508.

    Google Scholar 

  • Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks, International Journal of Science Education, 23, 623–641.

    Google Scholar 

  • Niaz, M. (2009). Critical Appraisal of Physical Science as a Human Enterprise. Dynamics of Scientific Progress. Dordrecht, The Netherlands: Springer Academic Publishers.

    Google Scholar 

  • Niaz, M. (2010). Science curriculum and teacher education: The role of presuppositions, contradictions, controversies and speculations vs. Kuhn’s normal science, Teaching and Teacher Education, 26, 891–899.

    Google Scholar 

  • Niaz, M., & Fernández, R. (2008). Understanding quantum numbers in general chemistry textbooks, International Journal of Science Education, 30(7), 869–901.

    Google Scholar 

  • Norris, S., Guilbert, M., Smith, M., Shaharam, H., & Phillips, L. (2005). A theoretical Framework for Narrative Explanation in Science, Science Education, 89(4) 535–554.

    Google Scholar 

  • Novick, S., & Nussbaum, J. (1978). Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study, Science Education, 62[3], 273–281.

    Google Scholar 

  • Novick, S., & Nussbaum, J. (1981). Pupils’ Understanding of the Particulate Nature of Matter: A Cross-Age Study, Science Education, 65[2], 187–196.

    Google Scholar 

  • Nuffield Foundation (1967). Chemistry. Handbook for teachers, London: Longmans/Penguin Books.

    Google Scholar 

  • Nussbaum, J. (1985). The Particulate Nature of Matter in the Gaseous Phase. In R. Driver, E. Guesne y A. Tiberghien (Eds.), Children's Ideas in Science, (pp. 125–144) Philadelphia: Open University Press.

    Google Scholar 

  • Nye, M. J. (1993). From Chemical Philosophy to Theoretical Chemistry, University of California Press, Berkeley

    Google Scholar 

  • Ogilvie, J. F. (1994). The Nature of the Chemical Bond 1993. There are No Such Things as Orbitals!, in E. S. Kryachko and J. L. Calais (eds.), Conceptual Trends in Quantum Chemistry, (pp. 171–198), Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Özmen, H. (2004). Some Student Misconceptions in Chemistry: A Literature Review of Chemical Bonding, Journal of Science Education and Technology, 13(2), 147–159.

    Google Scholar 

  • Pagliaro, M. (2010). On shapes, molecules and models: An insight into chemical methodology, European Journal of Chemistry, 1, 276–281.

    Google Scholar 

  • Panusch, M., Singh, R., & Heering, P. (2008). How Robert A. Millikan got the Physics Nobel Prize’. Proceedings of the Second International Conference on Story in Science Teaching, Munich, Germany.

    Google Scholar 

  • Paoloni, L. (1982). Classical mechanics and quantum mechanics: an elementary approach to the comparison of two viewpoints, European Journal of Science Education, 4, 241–251.

    Google Scholar 

  • Paraskevopoulou, E. and Koliopoulos, D. (2011). Teaching the Nature of Science Through the Millikan-Ehrenhaft Dispute, Science & Education, 20(10), 943–960. Published online 26 September 2010.

    Google Scholar 

  • Park, E: J. & Light, G. (2009). Identifying Atomic Structure as a Threshold Concept: Student mental models and troublesomeness, International Journal of Science Education, 31(2), 895–930.

    Google Scholar 

  • Peterson, R. F., Treagust, D. F., & Garnett, P. (1989). Development and application of a diagnostic instrument to evaluate grade 11 and 12 students’ concepts of covalent bonding and structure following a course of instruction, Journal of Research in Science Teaching, 26(4), 301–314.

    Google Scholar 

  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics, International Journal of Science Education, 20(9), 1075–1088.

    Google Scholar 

  • Piaget, J. & Garcia, R. (1983). Psychogenesis and the history of science. New York, Columbia University Press.

    Google Scholar 

  • Pospiech, G. (2000). Uncertainty and complementarity: The heart of quantum physics, Physics Education, 35(6), 393–399.

    Google Scholar 

  • Popper, K. (1969). Conjectures and Refutations, London: Routledge and Kegan Paul.

    Google Scholar 

  • Primas, H. (1983) Chemistry, Quantum Mechanics and Reductionism: Perspectives in theoretical chemistry, Berlin, Springer.

    Google Scholar 

  • Purser, G. H. (2001). Lewis structure in General Chemistry: Agreement between electron density calculations and Lewis structures, Journal of Chemical Education, 78(7), 981–983.

    Google Scholar 

  • Reichenbach, H. (1938). Experience and prediction: an analysis of the foundations and the structure of knowledge. Chicago: University of Chicago Press.

    Google Scholar 

  • Reichenbach, H. (1978, [1929]) The aims and methods of physical knowledge pp 81–125 in Hans Reichenbach: Selected writings 1909–1953 (M. Reichenbach and R.S. Cohen, Eds; principal translations by E.H. Schneewind), volumen II, Dordrecht: Reidel.

    Google Scholar 

  • Reish, G. A. (2005). How the Cold War transformed Philosophy of Science. To the Icy Slopes of Logic, New York, Cambridge University Press (Versión en español Cómo la Guerra fria transformó la filosofía de la ciencia. Hacia las heladas laderas de la lógica, Buenos Aires, Universidad de Quilmes Editorial, 2009).

    Google Scholar 

  • Rodríguez, M., & Niaz, M. (2004). A Reconstruction of Structure of the Atom and Its Implications for General Physics Textbooks: A History and Philosophy of Science Perspective, Journal of Science Education and Technology, Vol. 13, No. 3.

    Google Scholar 

  • Scerri, E. R. (1991). Electronic Configurations, Quantum Mechanics and Reduction, British Journal for the Philosophy of Science, 42(3), 309–25.

    Google Scholar 

  • Scerri, E. R. (2000a). Have Orbitals Really Been Observed? Journal of Chemical Education, 77(11), 1492–4.

    Google Scholar 

  • Scerri, E. R. (2000b). The failure of Reduction and How to Resist Disunity of the Sciences in the Context of Chemical Education, Science & Education, 9, 405–425.

    Google Scholar 

  • Scerri, E. R. (2001). The Recently Claimed Observation of Atomic Orbitals and Some Related Philosophical Issues, Philosophy of Science, 68 (Proceedings) S76-S88, N. Koertge, ed. Philosophy of Science Association, East Lansing, MI

    Google Scholar 

  • Scerri, E. R. (2007). The Periodic Table: Its Story and Its Significance, Oxford University Press, New York.

    Google Scholar 

  • Scheffel, L., Brockmeier, W., & Parchmann, L. (2009). Historical material in macro-micro thinking: Conceptual change in chemistry education and the history of chemistry. In Gilbert, J. K. & Treagust, D. F. (Eds.). (2009). Multiple representations in chemical education (pp. 215–250). Springer.

    Google Scholar 

  • Schummer, J. (1998). The Chemical Core of Chemistry I: A Conceptual Approach, HYLE-International Journal for Philosophy of Chemistry, 4, 129–162.

    Google Scholar 

  • Schummer, J. (1999). Coping with the Growth of Chemical Knowledge: Challenges for Chemistry Documentation, Education, and Working Chemists, Educación Química, 10(2), 92–101.

    Google Scholar 

  • Schummer, J. (2008). The philosophy of chemistry in Fritz Allhoff (Ed.), Philosophies of the Sciences, (pp. 163–183), Albany, NY, USA: Blackwell-Wiley.

    Google Scholar 

  • Schwab, J. J. (1962). The teaching of science as enquiry. In J. J. Schwab & P. F. Brandwein (Eds.), The teaching of science. Cambridge: Harvard University Press.

    Google Scholar 

  • Seok P. & Jin S. (2011) What Teachers of Science Need to Know about Models: An overview, International Journal of Science Education, 33(8), 1109–1130.

    Google Scholar 

  • Segrè, E. (2007). From X-rays to Quarks: Modern Physicists and Their Discoveries, New York, USA: Dover Publications.

    Google Scholar 

  • Shahbazian, S. & Zahedi, M. (2006). The Role of Observables and Non-Observables in Chemistry: A Critique of Chemical Language, Foundations of Chemistry, 8, 37–52.

    Google Scholar 

  • Shiland, T. W. (1995). What’s the use of all this theory? The role of quantum mechanics in high school chemistry textbooks, Journal of Chemical Education, 72(3), 215–219.

    Google Scholar 

  • Shiland, T. W. (1997). Quantum mechanics and conceptual change in high school chemistry textbooks, Journal of Research in Science Teaching, 34(5), 535–545.

    Google Scholar 

  • Shrigley, R.L. & Koballa, T. R. (1989). Anecdotes: What Research Suggests about Their Use in the Science Classroom, School Science and Mathematics, 89, 293–298.

    Google Scholar 

  • Silberstein, M. (2002). Reduction, Emergence and explanation, en Machamer P., and Silberstein, M., Philosophy of Science, Oxford: Blackwell.

    Google Scholar 

  • Slater, J. C. (1951). A Simplification of the Hartree-Fock Method, Physical Review, 81, 385–390.

    Google Scholar 

  • Snooks, R. J. (2006). Another Scientific Practice separating chemistry from Physics: Thought Experiments, Foundations of Chemistry, 8, 255–270.

    Google Scholar 

  • Snow, C.P. (1981). The Physicists. A generation that changed the world, Macmillan, London

    Google Scholar 

  • Spence, J. C. H., O’Keeffe, M. and Zuo, J. M. (2001). Have orbitals really been observed? Letter in Journal of Chemical Education, 78(7), 877.

    Google Scholar 

  • Stewart, I. (2007). Why Beauty is Truth. The history of symmetry. Basic Books.

    Google Scholar 

  • Stinner, A. (2008). Teaching Modern Physics using Selected Nobel Lectures APS Physics Forum on Education, fall.

    Google Scholar 

  • Stinner, A. & Williams, H. (1998). History and Philosophy of Science in the Science Curriculum, a chapter in The International Handbook of Science Education. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Strong, I. E. (1962). Chemical Systems. Chemical Bond Approach Project, New York, USA: Chemical Education Publishing Company.

    Google Scholar 

  • Styer, D. F. (2000). The Strange World of Quantum Mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sutcliffe, B. T. (1996). The Development of the Idea of a Chemical Bond, International Journal of Quantum Chemistry, 58, 645–55.

    Google Scholar 

  • Taber, K. S. (1994). Misunderstanding the ionic bond, Education in Chemistry, 31(4), 100–103.

    Google Scholar 

  • Taber, K. S. (1997). Student understanding of ionic bonding: molecular versus electrostatic framework? School Science Review, 78(285), 85–95.

    Google Scholar 

  • Taber, K. S. (2002a). Conceptualizing Quanta: Illuminating the Ground State of Student Understanding of Atomic Orbitals, Chemistry Education: Research and Practice, 3(2), 145–158.

    Google Scholar 

  • Taber, K. S. (2002b). Compounding Quanta: Probing the Frontiers of Student Understanding Of Molecular Orbitals, Chemistry Education: Research and Practice, 3(2), 159–173.

    Google Scholar 

  • Taber, K.S. (2003). The Atom in the Chemistry Curriculum: Fundamental Concept, Teaching Model or Epistemological Obstacle, Foundations of Chemistry, 5, 43–84.

    Google Scholar 

  • Taber, K. S. (2005). Learning Quanta: Barriers to Stimulating Transitions in Student Understanding of Orbital Ideas, Science Education, 89, 94–116.

    Google Scholar 

  • Talanquer, V. (2011, online), School Chemistry: The Need for Transgression, Science & Education, published online 17th September.

    Google Scholar 

  • Tapio, I. (2007). Models and Modelling in Physics Education: A critical Re-analysis of Philosophical Underpinnings and Suggestions for Revisions, Science & Education, 16, 751–773.

    Google Scholar 

  • Teichmann, J. (2008). Anecdotes Can Tell Stories—How? And What is Good and What is Bad about Such Stories? Proceedings of the Second International Conference on Story in Science Teaching, Munich, Germany.

    Google Scholar 

  • Thomson, J. J. (1904). Electricity and matter, Westminster, UK: Archibald Constable & Co. Ltd.

    Google Scholar 

  • Toulmin, S. (1961). Foresight and Understanding: An Enquiry Into the Aims of Science, Bloomington: Indiana University Press.

    Google Scholar 

  • Toulmin, S. (1972). Human Understanding, Princeton: Princeton University Press.

    Google Scholar 

  • Tsaparlis, G., & Papaphotis, G. (2002). Quantum-Chemical Concepts: Are They Suitable for Secondary Students? Chemistry Education: Research and Practice, 3(2), 129–144.

    Google Scholar 

  • Tsaparlis, G. (1997a). Atomic orbitals, molecular orbitals and related concepts: Conceptual difficulties among chemistry students. Research in Science Education, 27, 271–287.

    Google Scholar 

  • Tsaparlis, G. (1997b). Atomic and Molecular Structure in Chemical Education, Journal of Chemical Education, 74(8), 922–5.

    Google Scholar 

  • Tsaparlis, G. (2001). Towards a meaningful introduction to the Schrödinger equation through historical and heuristic approaches, Chemistry Education: Research and Practice in Europe, 2, 203–213.

    Google Scholar 

  • Tsaparlis, G., & Papaphotis, G. (2009). High-school Students’ Conceptual Difficulties and Attempts at Conceptual Change: The case of basic quantum chemical concepts, International Journal of Science Education, 31(7), 895–930.

    Google Scholar 

  • Toulmin S. & Goodfield J. (1962). The Architecture of Matter, The University of Chicago Press, Chicago

    Google Scholar 

  • Valanides, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving, Chemistry Education: Research and Practice in Europe, 1, 249–262.

    Google Scholar 

  • Van Aalsvoort, J. (2004) ‘Logical positivism as a tool to analyse the problem of chemistry’s lack of relevance in secondary school chemical education’, International Journal of Science Education, 26, 1151–1168.

    Google Scholar 

  • Van Brakel, J. (2000). Philosophy of Chemistry, Leuven University Press, Louvain.

    Google Scholar 

  • Van Berkel, B. (2005). The Structure of Current School Chemistry. A Quest for Conditions for Escape, Centrum voor Didactiek van Wiskunde en Natuurwetenschappen, University of Utrech CD-β Press, Utrech.

    Google Scholar 

  • van Berkel, B., de Vos, W., Veronk, A. H., & Pilot, A. (2000). Normal science education and its dangers: The case of school chemistry. Science & Education, 9, 123–159.

    Google Scholar 

  • Velmulapalli, G. K. & Byerly H. (1999) Remnants of Reductionism, Foundations of Chemistry 1, 17–41.

    Google Scholar 

  • Viana, H. E. B. & Porto, P. A. (2010). The development of Dalton’s Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry, Science & Education, 19(1), 75–90.

    Google Scholar 

  • Wandersee, J. H., & Griffard, P. B. (2002). The history of chemistry: Potential and actual contributions to chemical education in Gilbert J. et al. (eds), Chemical Education: Towards Research-based Practice, (Chapter 2, pp. 29–46), Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Weyer, J. (1974) Chemiegeschichtsschreibung von Wiegleb (1790) bis Partington (1970); Gerstenberg: Hildescheim

    Google Scholar 

  • Wightman, T., Johnston, K., & Scott, P. (1987). Children’s learning in science project in the classroom. Approaches to teaching the particulate theory of matter, Centre for Studies in Science and Mathematics Education: University of Leeds.

    Google Scholar 

  • Wisniak, J. (2013). Gustav Charles Bonaventure Chancel, Educación Química, 24(1), 23–30.

    Google Scholar 

  • Wittmann, M. C., Steinberg, R. N., & Redish, E. F. (2002). Investigating student understanding of quantum physics: Spontaneous models of conductivity, American Journal of Physics, 70, 218–226.

    Google Scholar 

  • Woolley, R.G. (1978). Must a molecule have a shape? Journal of the American Chemical Society, 100, 1073–1078.

    Google Scholar 

  • Yager, R. E. (2004). Science is Not Written, But It Can Be Written About, in W. Saul (Ed.), Crossing Borders in Literacy and Science Instruction, (pp. 95–107) Washington: NSTA.

    Google Scholar 

  • Zuo, J.; Kim, M.; O’Keeffe, M.; Spence, J. (1999). Direct observation of d holes and Cu-Cu bonding in. Cu2O, Nature, 401, 49–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Chamizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chamizo, J.A., Garritz, A. (2014). Historical Teaching of Atomic and Molecular Structure. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_12

Download citation

Publish with us

Policies and ethics