Skip to main content

The Learner’s Thinking

  • Chapter
  • First Online:
Modelling Learners and Learning in Science Education

Abstract

This chapter explores how ‘thinking’ is best understood in the context of research into learners’ thinking. Thinking is associated with processing within a person’s cognitive system, much of which will not be under direct conscious control or even open to introspection. The importance of much preconscious thinking to scientific work and to learning is acknowledged. Terms such as creative thinking, logical thinking, problem-solving and metacognition are considered from the modelling perspective adopted in the book; and the notion of scientific thinking when it is adopted in relation to the wider scientific community is discussed. The limitations of computing metaphors for thinking are explored considering how cognition may be best understood as an emergent property of a system that has evolved iteratively under severe constraints, and in particular in the likelihood of much processing in the brain relying upon synaptic networks tuned in response to the individual's experience of the world. The chapter closes with a review of the relationships between key terms (ideas, perception, memory, understanding and thinking) explored in this part of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron, R. I. (1971). Knowing and the function of reason. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Anderberg, E. (2000). Word meaning and conceptions. An empirical study of relationships between students’ thinking and use of language when reasoning about a problem. Instructional Science, 28, 89–113.

    Article  Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi:10.1016/s1364-6613(00)01538-2.

    Article  Google Scholar 

  • Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi:10.1038/nrn1201.

    Article  Google Scholar 

  • Beatty, J., Rasmussen, N., & Roll-Hansen, N. (2002). Untangling the McClintock myths. Metascience, 11(3), 280–298.

    Article  Google Scholar 

  • Bonatti, L. (1994). Why should we abandon the mental logic hypothesis? Cognition, 50(1–3), 17–39. doi:10.1016/0010-0277(94)90019-1.

    Article  Google Scholar 

  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. doi:10.1002/sce.20449.

    Article  Google Scholar 

  • Brown, R., & McNeill, D. (1966/1976). The ‘tip-of-the-tongue’ phenomenon. In J. M. Gardiner (Ed.), Readings in human memory (pp. 243–255). London: Methuen & Company.

    Google Scholar 

  • Changeux, J.-P. (1983/1997). Neuronal man: The biology of mind (L. Garey, Trans.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Churchland, P. S. (1980). A perspective on mind-brain research. The Journal of Philosophy, 77(4), 185–207.

    Article  Google Scholar 

  • Coll, R. K., Lay, M. C., & Taylor, N. (2008). Scientists and scientific thinking: Understanding scientific thinking through an investigation of scientists views about superstitions and religious beliefs. Eurasia Journal of Mathematics, Science & Technology Education, 4(3), 197–214.

    Google Scholar 

  • Dunbar, K. (2001). What scientific thinking reveals about the nature of cognition. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 115–140). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Newark, DE: American Philosophical Association.

    Google Scholar 

  • Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288–307. doi:10.1006/ccog.2000.0447.

    Article  Google Scholar 

  • Gazzaniga, M. S., Fendrich, R., & Wessinger, C. M. (1994). Blindsight reconsidered. Current Directions in Psychological Science, 3(3), 93–96.

    Article  Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.

    Article  Google Scholar 

  • Harrison, A. G., & Coll, R. K. (Eds.). (2008). Using analogies in middle and secondary science classrooms. Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  • Hart, B. (1910). The conception of the subconscious. Journal of Abnormal Psychology, 4(6), 351–371. doi:10.1037/h0074022.

    Article  Google Scholar 

  • Ivić, I., Pešikan, A., & Antić, S. (2002). Active learning (2nd ed.). Belgrade, Serbia: Institute of Psychology.

    Google Scholar 

  • Jonassen, D. (2009). Reconciling a human cognitive architecture. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 13–33). New York: Routledge.

    Google Scholar 

  • Keller, E. F. (1983). A feeling for the organism: The life and work of Barbara McClintock. New York: W H Freeman and Company.

    Google Scholar 

  • Koestler, A. (1978/1979). Janus: A summing up. London: Pan Books.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71–94.

    Article  Google Scholar 

  • Lawson, A. E. (2010). Teaching inquiry science in middle and secondary schools. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Lawson, A. E., & Wollman, W. T. (1976). Encouraging the transition from concrete to formal cognitive functioning-an experiment. Journal of Research in Science Teaching, 13(5), 413–430. doi:10.1002/tea.3660130505.

    Article  Google Scholar 

  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (Child psychology in practice 6th ed., Vol. 4, pp. 153–196). New York: Wiley.

    Google Scholar 

  • Lindahl, M. G. (2010). Of pigs and men: Understanding students’ reasoning about the use of pigs as donors for xenotransplantation. Science Education, 19(9), 867–894. doi:10.1007/s11191-010-9238-y.

    Article  Google Scholar 

  • Lubben, F., Sadeck, M., Scholtz, Z., & Braund, M. (2009). Gauging students’ untutored ability in argumentation about experimental data: A South African case study. International Journal of Science Education, 32(16), 2143–2166. doi:10.1080/09500690903331886.

    Article  Google Scholar 

  • Miller, A. I. (1986). Imagery in scientific thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Muldoon, C. A. (2006). Shall I compare thee to a pressure wave?: Visualisation, analogy, insight and communication in physics. Ph.D., University of Bath, Bath.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175–220.

    Article  Google Scholar 

  • Parkin, A. J. (1987). Memory & amnesia: An introduction. Oxford, UK: Basil Blackwell.

    Google Scholar 

  • Parkin, A. J. (1993). Memory: Phenomena, experiment and theory. Hove, UK: Psychology Press.

    Google Scholar 

  • Phang, F. A. (2009). The patterns of physics problem-solving from the perspective of metacognition. Unpublished Ph.D. thesis. Cambridge, UK: Faculty of Education, University of Cambridge.

    Google Scholar 

  • Rothenberg, A. (1995). Creative cognitive processes in Kekulé’s discovery of the structure of the benzene molecule. The American Journal of Psychology, 108(3), 419–438.

    Article  Google Scholar 

  • Sagan, C. (1990). Why we need to understand science. The Skeptical Inquirer, 14(3), 263–269.

    Google Scholar 

  • Sijuwade, P. O. (2007). Recent trends in the philosophy of science: Lessons for sociology. Journal of Social Sciences, 14(1), 53–64.

    Google Scholar 

  • Taber, K. S. (2008b). Towards a curricular model of the nature of science. Science Education, 17(2–3), 179–218. doi:10.1007/s11191-006-9056-4.

    Google Scholar 

  • Taber, K. S. (2011). The natures of scientific thinking: Creativity as the handmaiden to logic in the development of public and personal knowledge. In M. S. Khine (Ed.), Advances in the nature of science research – Concepts and methodologies (pp. 51–74). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Taber, K. S. (Forthcoming). Methodological issues in science education research: A perspective from the philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history and philosophy for science and mathematics education. Springer.

    Google Scholar 

  • Taber, K. S., & Bricheno, P. A. (2009). Coordinating procedural and conceptual knowledge to make sense of word equations: Understanding the complexity of a ‘simple’ completion task at the learner’s resolution. International Journal of Science Education, 31(15), 2021–2055. doi:10.1080/09500690802326243.

    Article  Google Scholar 

  • Thomson, R. (1959). The psychology of thinking. Harmondsworth, UK: Penguin Books.

    Google Scholar 

  • Tsaparlis, G. (1994). Blocking mechanisms in problem solving from the Pascual-Leone’s M-space perspective. In H.-J. Schmidt (Ed.), Problem solving and misconceptions in chemistry and physics (pp. 211–226). Dortmund, Germany: International Council of Associations for Science Education.

    Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • White, R. T., & Mitchell, I. J. (1994). Metacognition and the quality of learning. Studies in Science Education, 23, 21–37. doi:10.1080/03057269408560028.

    Article  Google Scholar 

  • Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259–1272. doi:10.1002/tea.3660301008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). The Learner’s Thinking. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_7

Download citation

Publish with us

Policies and ethics