Skip to main content

Abstract

The notions of remembering and forgetting are familiar components of the mental register, the way we commonly talk about subjective mental experience. Yet the everyday ‘folk psychology’ notion of memory does not well match what research tells us about human memory. This chapter considers what is currently understood about how memory works, and how this has consequences for the way we think about remembering (and forgetting) in science education research. In particular, research suggests that there is no strong distinction between the part of the cognitive system that ‘stores’ memories, and the part that interprets current experience. Rather, it seems we have an apparatus for representing and interpreting experience which has evolved to be quite fluid: our ‘memories’ colour our experiences and our experiences modify our ‘memories’. That is, human memory does not seem suitable to act as a high fidelity record of past experiences, perhaps because it has evolved primarily as a means to inform current decision-making and actions: a function which is better served by a memory which looks to offer a constantly updated best-fit model of the world rather than an accurate record of the past. This may in part explain why memories of critical demonstrations to challenge learners’ alternative conceptions may in time become modified and then recruited to support their initial conceptions. Given the centrality of memory to learning, and so to teaching, it is argued that it is unfortunate that research in science education has not sought to make it a key focus of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams, I. (2011). Practical work in school science: A minds-on approach. London: Continuum.

    Google Scholar 

  • Alvarez, P., & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model [Neurobiology]. Proceedings of the National Academy of Sciences, 91, 7041–7045.

    Article  Google Scholar 

  • Anderson, J. R. (1995). Learning and memory: An integrated approach. New York: Wiley.

    Google Scholar 

  • Andrés, P. (2003). Frontal cortex as the central executive of working memory: Time to revise our view. Cortex, 39(4–5), 871–895. doi:10.1016/s0010-9452(08)70868-2.

    Article  Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Baddeley, A. D. (1990). Human memory: Theory and practice. Hove, UK: Lawrence Erlbaum Associates.

    Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi:10.1016/s1364-6613(00)01538-2.

    Article  Google Scholar 

  • Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi:10.1038/nrn1201.

    Article  Google Scholar 

  • Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2009). Working memory and binding in sentence recall. Journal of Memory and Language, 61, 438–456.

    Article  Google Scholar 

  • Barba, G. D. (1993). Confabulation: Knowledge and recollective experience. Cognitive Neuropsychology, 10(1), 1–20.

    Article  Google Scholar 

  • Bourtchouladze, R. (2002). Memories are made of this. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Brahler, C. J., & Walker, D. (2008). Learning scientific and medical terminology with a mnemonic strategy using an illogical association technique. Advances in Physiology Education, 32, 219–224. doi:10.1152/advan.00083.2007.

    Article  Google Scholar 

  • Burgess, P. W. (1996). Confabulation and the control of recollection. Memory, 4(4), 359–412.

    Article  Google Scholar 

  • Cosgrove, M. (1995). A study of science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295–310.

    Article  Google Scholar 

  • Cosgrove, M., & Osborne, R. (1985). Lesson frameworks for changing children’s ideas. In R. J. Osborne & P. Freyberg (Eds.), Learning in science: The implications of children’s science (pp. 101–111). Auckland, New Zealand: Heinemann.

    Google Scholar 

  • D’Esposito, M. (2007). From cognitive to neural models of working memory. In J. Driver, P. Haggard, & T. Shallice (Eds.), Mental processes in the human brain (pp. 7–25). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Driver, J., Haggard, P., & Shallice, T. (Eds.). (2007). Mental processes in the human brain. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Driver, R. (1983). The pupil as scientist? Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Dudai, Y., & Eisenberg, M. (2004). Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron, 44(1), 93–100. doi:10.1016/j.neuron.2004.09.003.

    Article  Google Scholar 

  • Elbert, T., & Schauer, M. (2002). Burnt into memory. Nature, 419, 883.

    Article  Google Scholar 

  • Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208(4448), 1181–1182.

    Article  Google Scholar 

  • Fuster, J. M. (1995). Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Gauld, C. (1986). Models, meters and memory. Research in Science Education, 16(1), 49–54. doi:10.1007/bf02356817.

    Article  Google Scholar 

  • Gauld, C. (1989). A study of pupils’ responses to empirical evidence. In R. Millar (Ed.), Doing science: Images of science in science education (pp. 62–82). London: The Falmer Press.

    Google Scholar 

  • Hitch, G. J., & Baddeley, A. D. (1976). Verbal reasoning and working memory. Quarterly Journal of Experimental Psychology, 28(4), 603–621.

    Article  Google Scholar 

  • Holdsworth, L. (1998). Is it repressed memory with delayed recall or is it false memory syndrome-the controversy and its potential legal implications. Law & Psychology Review, 22, 103–129.

    Google Scholar 

  • Inoue, S., & Matsuzawa, T. (2007). Working memory of numerals in chimpanzees. Current Biology, 17(23), R1004–R1005. doi:10.1016/j.cub.2007.10.027.

    Article  Google Scholar 

  • Jonassen, D. (2009). Reconciling a human cognitive architecture. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 13–33). New York: Routledge.

    Google Scholar 

  • Koffka, K. (1967). Principles of Gestalt psychology. In J. A. Dyal (Ed.), Readings in psychology: Understanding human behavior (2nd ed., pp. 9–13). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Kopelman, M. D. (1987). Two types of confabulation. Journal of Neurology, Neurosurgery & Psychiatry, 50(11), 1482–1487. doi:10.1136/jnnp.50.11.1482.

    Article  Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrove (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Luria, A. R. (1987). The mind of a Mnemonist. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Miller, G. A. (1968). The magical number seven, plus or minus two: Some limits on our capacity for processing information. In The psychology of communication: Seven essays (pp. 21–50). Harmondsworth, UK: Penguin.

    Google Scholar 

  • Parkin, A. J. (1987). Memory & amnesia: An introduction. Oxford, UK: Basil Blackwell.

    Google Scholar 

  • Parkin, A. J. (1993). Memory: Phenomena, experiment and theory. Hove, UK: Psychology Press.

    Google Scholar 

  • Payne, D. G. (1987). Hypermnesia and reminiscence in recall: A historical and empirical review. Psychological Bulletin, 101(1), 5–27.

    Article  Google Scholar 

  • Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. In J. Driver, P. Haggard, & T. Shallice (Eds.), Mental processes in the human brain (pp. 27–47). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained in attentional blindness for dynamic events. Perception, 28(9), 1059–1074.

    Article  Google Scholar 

  • Sweller, J. (2007). Evolutionary biology and educational psychology. In J. S. Carlson & J. R. Levin (Eds.), Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology (pp. 165–175). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Taber, K. S. (1998a). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608.

    Article  Google Scholar 

  • Taber, K. S. (2000b). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22(4), 399–417.

    Article  Google Scholar 

  • Taber, K. S. (2001b). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731–753.

    Article  Google Scholar 

  • Taber, K. S. (2003). Lost without trace or not brought to mind? – A case study of remembering and forgetting of college science. Chemistry Education: Research and Practice, 4(3), 249–277.

    Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S. (2013d). A common core to chemical conceptions: Learners’ conceptions of chemical stability, change and bonding. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Taber, K. S., & Tan, K. C. D. (2011). The insidious nature of ‘hard core’ alternative conceptions: Implications for the constructivist research programme of patterns in high school students’ and pre-service teachers’ thinking about ionisation energy. International Journal of Science Education, 33(2), 259–297. doi:10.1080/09500691003709880.

    Article  Google Scholar 

  • Vertes, R. P. (2004). Memory consolidation in sleep: Dream or reality. Neuron, 44(1), 135–148. doi:10.1016/j.neuron.2004.08.034.

    Article  Google Scholar 

  • Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121–133. doi:10.1016/j.neuron.2004.08.031.

    Article  Google Scholar 

  • White, R. T., & Gunstone, R. F. (1992). Probing understanding. London: Falmer Press.

    Google Scholar 

  • Wiltgen, B. J., Brown, R. A. M., Talton, L. E., & Silva, A. J. (2004). New circuits for old memories: The role of the Neocortex in consolidation. Neuron, 44(1), 101–108. doi:10.1016/j.neuron.2004.09.015.

    Article  Google Scholar 

  • Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259–1272. doi:10.1002/tea.3660301008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). The Learner’s Memory. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_5

Download citation

Publish with us

Policies and ethics