Skip to main content

Modelling Conceptual Learning

  • Chapter
  • First Online:
Modelling Learners and Learning in Science Education

Abstract

The chapter considers the suggestion that there is a learning paradox that undermines constructivist notions of learning, but suggests that this claim ignores the potential of emergent systems to give rise to new properties at higher levels of organisation. Drawing upon the analysis and models in earlier chapters, questions of how concepts are acquired, developed and related to each other are explored. Vygotsky’s notion of concept development is considered, and is modified through the introduction of the notion of melded concepts that result from the kind of interconceptualisation between spontaneous and academic concepts that he considered so central. Challenges in modelling conceptual development in science are illustrated by an analysis of two concepts where informal ‘life-world’ ideas stand in a different relationship to formal scientific ideas: energy (when some very common alternative conceptions are completely inconsistent with the accepted scientific concept) and metals (where there is considerable, but not complete, overlap between everyday, and indeed engineering, notions; and the formal concept developed in chemistry classes); and by considering how students’ manifold concepts may reflect the sequences of formal models met in learning about some science concepts. Ideas about types of conceptual change, and the conceptual ecology analogy, are explored in relation to the models developed in the book. It is mooted that worldview functions like a conceptual habitat within the conceptual ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikenhead, G. S. (1996). Science education: Border crossing into the sub-culture of science. Studies in Science Education, 27(1), 1–52.

    Article  Google Scholar 

  • Aikenhead, G. S., & Jegede, O. J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. Journal of Research in Science Teaching, 36(3), 269–287. doi:10.1002/(sici)1098-2736(199903)36:3<269::aid-tea3>3.0.co;2-t.

    Article  Google Scholar 

  • Ambusaidi, A., & Al-Shuaili, A. (2009). Science education development in the Sultanate of Oman. In S. BouJaoude & Z. R. Dagher (Eds.), Arab States (Vol. 3, pp. 205–219). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Ausubel, D. P., & Robinson, F. G. (1971). School learning: An introduction to educational psychology. London: Holt.

    Google Scholar 

  • Behe, M. J. (2007). The edge of evolution: The search for the limits of Darwinism. New York: Free Press.

    Google Scholar 

  • Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139–172.

    Article  Google Scholar 

  • Boyle, H. N. (2006). Memorization and learning in Islamic schools. Comparative Education Review, 50(3), 478–495.

    Article  Google Scholar 

  • Cajori, F. (1922). On the history of caloric. Isis, 4(3), 483–492.

    Article  Google Scholar 

  • Caravita, S., & Halldén, O. (1994). Re-framing the problem of conceptual change. Learning and Instruction, 4(1), 89–111.

    Article  Google Scholar 

  • Chapanis, N. P., & Chapanis, A. (1964). Cognitive dissonance. Psychological Bulletin, 61(1), 1–22. doi:10.1037/h0043457.

    Article  Google Scholar 

  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere (Ed.), Cognitive models in science (Vol. XV, pp. 129–186). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). New York: Routledge.

    Google Scholar 

  • Chi, M. T. H., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10(2&3), 249–260.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes; A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.

    Article  Google Scholar 

  • Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109–138.

    Article  Google Scholar 

  • Claxton, G. (1986). The alternative conceivers’ conceptions. Studies in Science Education, 13, 123–130. doi:10.1080/03057268608559934.

    Article  Google Scholar 

  • Claxton, G. (1993). Minitheories: A preliminary model for learning science. In P. J. Black & A. M. Lucas (Eds.), Children’s informal ideas in science (pp. 45–61). London: Routledge.

    Google Scholar 

  • Cobern, W. W. (1994). Worldview theory and conceptual change in science education. Paper presented at the National Association for Research in Science Teaching, Anaheim, CA.

    Google Scholar 

  • Collins, H. (2010). Tacit and explicit knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Cooper, J. (2007). Cognitive dissonance: Fifty years of a classic theory. London: Sage.

    Google Scholar 

  • Cray, D., Dawkins, R., & Collins, F. (2006, November 5). God vs. science. Time. Retrieved from http://www.time.com/time/printout/0,8816,1555132,00.html

  • Dagher, Z. R. (2009). Epistemology of science in curriculum standards of four Arab countries. In S. BouJaoude & Z. R. Dagher (Eds.), Arab States (Vol. 3, pp. 41–60). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Darwin, C. (1859/1968). The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Harmondsworth, UK: Penguin.

    Google Scholar 

  • Demetriou, A., & Mouyi, A. (2011). Processing efficiency, representational capacity, and reasoning: Modelling their dynamic interactions. In P. Barrouillet & V. Gaillard (Eds.), Cognitive development and working memory: A dialogue between neo-Piagetian theories and cognitive approaches (pp. 69–103). Hove, UK: Psychology Press.

    Google Scholar 

  • Eickelman, D. F. (1978). The art of memory: Islamic education and its social reproduction. Comparative Studies in Society and History, 20(04), 485–516. doi:10.1017/S0010417500012536.

    Article  Google Scholar 

  • Ezcurdia, M. (1998). The concept-conception distinction. Philosophical Issues, 9, 187–192. doi:10.2307/1522969.

    Article  Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (Eds.). (1963). The Feynman lectures on physics (Vol. 1). Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633.

    Article  Google Scholar 

  • Gilbert, J. K., & Swift, D. J. (1985). Towards a Lakatosian analysis of the Piagetian and alternative conceptions research programs. Science Education, 69(5), 681–696.

    Article  Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Article  Google Scholar 

  • Gilley, S., & Loades, A. (1981). Thomas Henry Huxley: The war between science and religion. The Journal of Religion, 61(3), 285–308.

    Article  Google Scholar 

  • Gunckel, K. L., Mohan, L., Covitt, B. A., & Anderson, C. W. (2012). Addressing challenges in developing learning progressions for environmental science literacy. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progression in science: Current challenges and future directions (pp. 39–75). Rotterdam, The Netherlands: Sense.

    Chapter  Google Scholar 

  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(7-Physics Education Research Supplement), S52–S59.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: Friend or foe? In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 11–24). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hickey, R., & Schibeci, R. A. (1999). The attraction of magnetism. Physics Education, 34(6), 383.

    Article  Google Scholar 

  • James, W. (1890). The principles of psychology. Retrieved from http://psychclassics.yorku.ca/James/Principles/index.htm

  • Karmiloff-Smith, A. (1994). Précis of beyond modularity: A developmental perspective on cognitive science. The Behavioral and Brain Sciences, 17(04), 693–707. doi:10.1017/S0140525X00036621.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1996). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kawagley, A. O., Norris-Tull, D., & Norris-Tull, R. A. (1998). The indigenous worldview of Yupiaq culture: Its scientific nature and relevance to the practice and teaching of science. Journal of Research in Science Teaching, 35(2), 133–144. doi:10.1002/(sici)1098-2736(199802)35:2<133::aid-tea4>3.0.co;2-t.

    Article  Google Scholar 

  • Kelly, G. (1963). A theory of personality: The psychology of personal constructs. New York: W W Norton & Company.

    Google Scholar 

  • Koltko-Rivera, M. E. (2006). Rediscovering the later version of Maslow’s hierarchy of needs: Self-transcendence and opportunities for theory, research, and unification. Review of General Psychology, 10(4), 302–317.

    Article  Google Scholar 

  • Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago.

    Book  Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrove (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980b). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195–208.

    Article  Google Scholar 

  • Leslie, A. M. (1984). ToMM, ToBy and agency: Core architecture and domain specificity. In L. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 119–148). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lightman, B. (2002). Huxley and scientific agnosticism: The strange history of a failed rhetorical strategy. The British Journal for the History of Science, 35(03), 271–289. doi:10.1017/S0007087402004715.

    Article  Google Scholar 

  • Long, D. E. (2011). Evolution and religion in American education: An ethnography. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Morris, H. M. (2000). The long war on God: The history and impact of the creation/evolution conflict. Green Forest, AR: Master Books.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20(9), 1075–1088.

    Article  Google Scholar 

  • Piaget, J. (1970/1972). The principles of genetic epistemology (W. Mays, Trans.). London: Routledge & Kegan Paul.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167–199.

    Article  Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Towards a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Pugh, K. J. (2004). Newton’s laws beyond the classroom walls. Science Education, 88(2), 182–196. doi:10.1002/sce.10109.

    Article  Google Scholar 

  • Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34. doi:10.1207/s1532690xci1801_01.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97–115). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Schwedes, H., & Schmidt, D. (1992). Conceptual change: A case study and theoretical comments. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 188–292). Kiel, Germany: Institut für die Pädagogik der Naturwissenschaften.

    Google Scholar 

  • Shayer, M., & Adey, P. (1981). Towards a science of science teaching: Cognitive development and curriculum demand. Oxford, UK: Heinemann Educational Books.

    Google Scholar 

  • Smith, E. L. (1991). A conceptual change model of learning science. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science (pp. 43–63). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.

    Article  Google Scholar 

  • Solomon, J. (1983). Learning about energy: How pupils think in two domains. European Journal of Science Education, 5(1), 49–59. doi:10.1080/0140528830050105.

    Article  Google Scholar 

  • Solomon, J. (1992). Getting to know about energy – In school and society. London: Falmer Press.

    Google Scholar 

  • Taber, K. S. (2001b). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731–753.

    Article  Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Taber, K. S. (2013e). Conceptual frameworks, metaphysical commitments and worldviews: The challenge of reflecting the relationships between science and religion in science education. In N. Mansour & R. Wegerif (Eds.), Science education for diversity. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Taber, K. S. (Submitted a). The relationship between science and religion – A contentious and complex issue facing science education. In B. Akpan (Ed.), Science education: A global perspective.

    Google Scholar 

  • Taber, K. S. (Submitted b). Representing evolution in science education: The challenge of teaching about natural selection. In B. Akpan (Ed.), Science education: A global perspective.

    Google Scholar 

  • Taber, K. S., & Tan, K. C. D. (2011). The insidious nature of ‘hard core’ alternative conceptions: Implications for the constructivist research programme of patterns in high school students’ and pre-service teachers’ thinking about ionisation energy. International Journal of Science Education, 33(2), 259–297. doi:10.1080/09500691003709880.

    Article  Google Scholar 

  • Tavakol, M., & Dennick, R. (2010). Are Asian international medical students just rote learners? Advances in Health Sciences Education, 15(3), 369–377. doi:10.1007/s10459-009-9203-1.

    Article  Google Scholar 

  • Thagard, P. (1992). Conceptual revolutions. Oxford, UK: Princeton University Press.

    Google Scholar 

  • Vosniadou, S. (Ed.). (2008b). International handbook of research on conceptual change. London: Routledge.

    Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1934/1994). The development of academic concepts in school aged children. In R. van der Veer & J. Valsiner (Eds.), The Vygotsky reader (pp. 355–370). Oxford, UK: Blackwell.

    Google Scholar 

  • Watts, M., & Pope, M. L. (1982). A Lakatosian view of the young personal scientist. Paper presented at the British Conference on Personal Construct Psychology, University of Manchester Institute of Science & Technology, Manchester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taber, K.S. (2013). Modelling Conceptual Learning. In: Modelling Learners and Learning in Science Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7648-7_15

Download citation

Publish with us

Policies and ethics