Skip to main content

Toxin Structure, Delivery and Action

  • Chapter
  • First Online:
Corynebacterium diphtheriae and Related Toxigenic Species

Abstract

Diphtheria toxin (DTx) consists of a 535 amino acids polypeptide and contains the following three domains: the amino terminal fragment A (FA or catalytic C-domain) that catalyses the transfer of an ADP-ribosyl group of NAD+ to a post-translationally modified histidine (diphthamide) residue on eukaryotic elongation factor 2 (eEF2) and inhibits protein synthesis. Fragment B (FB) consist of the carboxy terminal receptor-binding R-domain, and the translocation (or transmembrane) T-domain. Following binding to its cell surface receptor via R-domain, DTx is internalized through the clathrin-dependent endocytosis. The acid pH created in the early endosomes triggers a conformational change in the toxin leading to the insertion of the T and C-domains in the membrane. The catalytic domain is then translocated into the cytosol across the early endosomal membrane and protein synthesis inhibition occurs. DTx-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. FA can interact with both G and F-actin. The binding to the latter appears to take place at the plus end of the filament blocking further polymerisation and it was concluded that G-actin has an inhibitory effect on DTx nuclease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antignani A, Youle RJ (2008) Endosome fusion induced by diphtheria toxin translocation domain. Proc Natl Acad Sci U S A 105(23):8020–8025

    Article  PubMed  CAS  Google Scholar 

  • Bektaş M, Nurten R, Gürel Z, Sayers Z, Bermek E (1994) Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett 356(1):89–93

    Article  PubMed  Google Scholar 

  • Bektaş M, Günçer M, Güven C, Nurten R, Bermek E (2004) Actin—an inhibitor of eukaryotic elongation factor activities. Biochem Biophys Res Commun 317(4):1061–1066

    Article  PubMed  Google Scholar 

  • Bektaş M, Varol B, Nurten R, Bermek E (2009) Interaction of diphtheria toxin (fragment A) with actin. Cell Biochem Funct 27(7):430–439

    Article  PubMed  Google Scholar 

  • Bektaş M, Hacıosmanoğlu E, Özerman B, Varol B, Nurten R, Bermek E (2011) On diphtheria toxin fragment A release into the cytosol-Cytochalasin D effect and involvement of actin filaments and eukaryotic elongation factor 2. Int J Biochem Cell Biol 43(9):1365–1372

    Article  PubMed  Google Scholar 

  • Bermek E (1978) Mechanisms in Polypeptide Chain Elongation on Ribosomes. Proc Natl Acad Sci U S A 21:63–100

    CAS  Google Scholar 

  • Boquet P, Silverman MS, Pappenheimer AM Jr, Vernon WB (1976) Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc Natl Acad Sci U S A 73(12):4449–4453

    Article  PubMed  CAS  Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: Different modes of dying. Biochemistry (Mosc) 70(2):231–239

    Article  CAS  Google Scholar 

  • Bruce C, Baldwin RL, Lessnick SL, Wisnieski BJ (1990) Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity. Proc Natl Acad Sci U S A 87(8):2995–2998

    Article  PubMed  CAS  Google Scholar 

  • Carnell M, Zech T, Calaminus SD, Ura S, Hagedorn M, Johnston SA, May RC, Soldati T, Machesky LM, Insall RH (2011) Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. J Cell Biol 193(5):831–839

    Article  PubMed  CAS  Google Scholar 

  • Chang MP, Baldwin RL, Bruce C, Wisnieski BJ (1989) Second cytotoxic pathway of diphtheria toxin suggested by nuclease activity. Science 246(4934):1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Chassaing A, Pichard S, Araye-Guet A, Barbier J, Forge V, Gillet D (2011) Solution and membrane bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain. FEBS J 278(23):4516–4525

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357(6375):216–222

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ (1967) Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Biol Chem 25(1):83–98

    CAS  Google Scholar 

  • Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39(1):54–85

    PubMed  CAS  Google Scholar 

  • Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39(11):1793–1803

    Article  PubMed  CAS  Google Scholar 

  • Draper RK, Simon MI (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol 87(3):849–854

    Article  PubMed  CAS  Google Scholar 

  • Falnes PO, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12(4):407–413

    Article  PubMed  CAS  Google Scholar 

  • Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJ, Schaffrath R (2003) Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49(5):1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63(1):82–87

    PubMed  CAS  Google Scholar 

  • Hamaoka M, Chinen I, Murata T, Takashima S, Iwamoto R, Mekada E (2010) Anti-human HB-EGF monoclonal antibodies inhibiting ectodomain shedding of HB-EGF and diphtheria toxin binding. J Biochem 148(1):55–69

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243(12):3553–3555

    PubMed  CAS  Google Scholar 

  • Iwamoto R, Mekada E (2000) Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev 11(4):335–344

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13(10):2322–2330

    PubMed  CAS  Google Scholar 

  • Jorgensen R, Yates SP, Teal DJ, Nilsson J, Prentice GA, Merrill AR, Rom Andersen GR (2004) Crystal structure of ADP-ribosylated sibosomal translocase from Saccharomyces cerevisiae. J Biol Chem 279(44):45919–45925

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R, Merrill AR, Yates SP, Marquez VE, Schwan AL, Boesen T, Andersen GR (2005) Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 436(7053):979–984

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R, Merrill AR, Andersen GR (2006) The life and death of translation elongation factor 2. Biochem Soc Trans 34:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kantardjieff K, Collier RJ, Eisenberg D (1989) X-ray grade crystals of the enzymatic fragment of diphtheria toxin. J Biol Chem 264(18):10402–10404

    PubMed  CAS  Google Scholar 

  • Komatsu N, Oda T, Muramatsu T (1998) Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and pseudomonas toxin. J Biochem 124(5):1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Lanzrein M, Sand O, Olsnes S (1996) GPI-anchored diphtheria toxin receptor allows membrane translocation of the toxin without detectable ion channel activity. EMBO J 15(4):725–734

    PubMed  CAS  Google Scholar 

  • Lee JW, Nakamura LT, Chang MP, Wisnieski BJ (2005) Mechanistic aspects of the deoxyribonuclease activity of diphtheria toxin. Biochim Biophys Acta 1747(1):121–131

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Bomsel M, Devilliers G, vanderSpek J, Murphy JR, Lukianov EV, Olsnes S, Boquet P (1997) Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol 23(3):445–447

    Article  PubMed  CAS  Google Scholar 

  • Lessnick SL, Lyczak JB, Bruce C, Lewis DG, Kim PS, Stolowitz ML, Hood L, Wisnieski BJ (1992) Localization of diphtheria toxin nuclease activity to fragment A. J Bacteriol 174(6):2032–2038

    PubMed  CAS  Google Scholar 

  • Liu S, Milne GT, Jeffrey G, Kuremsky JG, Fink GR, Leppla SH (2004) Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24(21):9487–9497

    Article  PubMed  CAS  Google Scholar 

  • Lory S, Carroll SF, Bernard PD, Collier RJ (1980) Ligand interactions of diphtheria toxin I. Binding and hydrolysis of NAD. J Biol Chem 255(24):12011–12015

    PubMed  CAS  Google Scholar 

  • Louie GV, Yang W, Bowman ME, Choe S (1997) Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol Cell 1(1):67–78

    Article  PubMed  CAS  Google Scholar 

  • Man P, Montagner C, Vitrac H, Kavan D, Pichard S, Gillet D, Forest E, Forge V (2011) Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J Mol Biol 414(1):123–134

    Article  PubMed  CAS  Google Scholar 

  • Mattheakis LC, Shen WH, Collier RJ (1992) DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 12(9):4026–4037

    PubMed  CAS  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533

    Article  PubMed  CAS  Google Scholar 

  • Mekada E, Senoh H, Iwamoto R, Okada Y, Uchida T (1991) Purification of diphtheria toxin receptor from Vero cells. J Biol Chem 266(30):20457–20462

    PubMed  CAS  Google Scholar 

  • Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E (1995) Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem 270(3):1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Morris RE, Gerstein AS, Bonventre PF, Saelinger CB (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect Immun 50(3):721–727

    PubMed  CAS  Google Scholar 

  • Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 101(2):548–559

    Article  PubMed  CAS  Google Scholar 

  • Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel) 3(3):294–308

    Article  CAS  Google Scholar 

  • Naglish JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69(6):1051–1061

    Article  Google Scholar 

  • Ortiz PA, Ulloque R, Kihara GK, Zheng H, Kinzy TG (2006) Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 281(43):32639–32648

    Article  PubMed  CAS  Google Scholar 

  • Papini E, Sandoná D, Rappuoli R, Montecucco C (1988) On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. EMBO J 7(11):3353–3359

    PubMed  CAS  Google Scholar 

  • Pappenheimer AM Jr, Dunlop PC, Adolph KW, Bodley JW (1983) Occurrence of diphthamide in archaebacteria. J Bacteriol 153(3):1342–1347

    PubMed  CAS  Google Scholar 

  • Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol May 88(1):91–142

    Article  CAS  Google Scholar 

  • Qualmann B, Kessels MM, Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150(5):111–116

    Article  Google Scholar 

  • Raab G, Klagsbrun M (1997) Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1333(3):F179–199

    PubMed  CAS  Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160(7):1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Rodnin MV, Kyrychenko A, Kienker P, Sharmo O, Posokhov YO, Collier RJ, Finkelstein A, Ladokhin AS (2010) Conformational switching of the diphtheria toxin T domain. J Mol Biol 402(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Rönnberg BJ, Middlebrook JL (1989) Cellular regulation of diphtheria toxin cell surface receptors. Toxicon 27(12):1377–1388

    Article  PubMed  Google Scholar 

  • Sandvig K, Olsnes S (1980) Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol 87(3):828–832

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Choe S, Eisenberg D, Collier RJ (1994) Participation of lysine 516 and phenylalanine 530 of diphtheria toxin in receptor recognition. J Biol Chem 269(46):29077–29084

    PubMed  CAS  Google Scholar 

  • Simpson JC, Smith DC, Roberts LM, Lord JM (1998) Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp Cell Res 239(2):293–300

    Article  PubMed  CAS  Google Scholar 

  • Skretting G, Torgersen ML, van Deurs B, Sandvig K (1999) Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J Cell Sci 112(22):3899–3909

    PubMed  CAS  Google Scholar 

  • Somsel Rodman J, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113(2):183–192

    PubMed  Google Scholar 

  • Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J (2007) Structures of modified eEF280S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26(9):2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Umata T, Moriyama Y, Futai M, Mekada E (1990) The cytotoxic action of diphtheria toxin and its degradation in intact Vero cells are inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase. J Biol Chem 265(35):21940–21945

    PubMed  CAS  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255(22):10710–10716

    PubMed  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228

    Article  PubMed  CAS  Google Scholar 

  • Varol B, Bektaş M, Nurten R, Bermek E (2012) The cytotoxic effect of diphtheria toxin on actin cytoskeleton. Cell Mol Biol Lett 17(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Wouters MA, Lau KK, Hogg PJ (2004) Cross-strand disulphides in cell entry proteins: poised to act. Bioessays 26(1):73–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Bektaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Varol, B., Özerman Edis, B., Bektaş, M. (2014). Toxin Structure, Delivery and Action. In: Burkovski, A. (eds) Corynebacterium diphtheriae and Related Toxigenic Species. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7624-1_5

Download citation

Publish with us

Policies and ethics