Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 797))

Abstract

Understanding how proteins assemble into their final shapes (or “fold”) has been a grand challenge of computational biology for decades. MSM methods have allowed, for the first time, the direct simulation of how proteins fold on the microsecond to 10’s of millisecond timescale, yielding novel insight into the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8(4):1409–1414

    Article  PubMed  CAS  Google Scholar 

  2. Beauchamp KA, McGibbon R, Lin YS, Pande VS (2012) Simple few-state models reveal hidden complexity in protein folding. Proc Natl Acad Sci USA 109(44):17,807–17,813

    Article  CAS  Google Scholar 

  3. Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131(12):124,101

    Article  Google Scholar 

  4. Bowman GR, Pande VS (2010) Protein folded states are kinetic hubs. Proc Natl Acad Sci USA 107(24):10,890–10,895

    Article  CAS  Google Scholar 

  5. Bowman GR, Voelz VA, Pande VS (2011) Atomistic folding simulations of the five-helix bundle protein (685). J Am Chem Soc 133(4):664–667

    Article  PubMed  CAS  Google Scholar 

  6. Lane TJ, Bowman GR, Beauchamp K, Voelz VA, Pande VS (2011) Markov state model reveals folding and functional dynamics in ultra-long MD trajectories. J Am Chem Soc 133(45):18,413–18,419

    Article  CAS  Google Scholar 

  7. Morcos F, Chatterjee S, McClendon CL, Brenner PR, Lopez-Rendon R, Zintsmaster J, Ercsey-Ravasz M, Sweet CR, Jacobson MP, Peng JW, Izaguirre JA (2010) Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput Biol 6(12):e1001, 015

    Article  Google Scholar 

  8. Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci USA 106(45):19,011–19,016

    Article  CAS  Google Scholar 

  9. Voelz VA, Bowman GR, Beauchamp K, Pande VS (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J Am Chem Soc 132(5):1526–1528

    Article  PubMed  CAS  Google Scholar 

  10. Voelz VA, Jager M, Yao S, Chen Y, Zhu L, Waldauer SA, Bowman GR, Friedrichs M, Bakajin O, Lapidus LJ, Weiss S, Pande VS (2012) Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment. J Am Chem Soc 134(30):12,565–12,577

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay S. Pande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pande, V.S. (2014). Understanding Protein Folding Using Markov State Models. In: Bowman, G., Pande, V., Noé, F. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, vol 797. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7606-7_8

Download citation

Publish with us

Policies and ethics