Skip to main content

The Forgotten Dimension

  • Chapter
The Chemistry of Matter Waves
  • 851 Accesses

Abstract

Henri Poincaré, one of the pioneers of relativity theory predicted that, for the sake of simplicity, physicists would never abandon Euclidean geometry. It is argued here that chemical theory has stagnated for the same reason. It is pointed out how a fresh approach in four-dimensional non-Euclidean space-time could eliminate most of the conceptual stumbling blocks that inhibit the growth of a non-classical theory for chemistry. Immediately foreseen benefits include an understanding of four-dimensional action, recognized as the spin function, to replace the unrealistic concept of orbital angular momentum associated with standing electron waves. The controversial issues of non-local interaction and the discrepancy with relativity resolve themselves, giving new meaning to the concept of quantum potential energy. Without the debilitating assumption of point particles problematical issues such as the exclusion principle, wave-particle duality, quantum probability, the measurement problem, uncertainty principle, molecular shape and the mysterious fine-structure constant, also disappear. An alternative wave model is introduced and shown to be consistent with elemental periodicity as it occurs in projective space-time, which is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Have you noticed that Bohm believes (as de Broglie did, by the way, 25 years ago) that he is able to interpret the quantum theory in deterministic terms? That way seems too cheap to me.

  2. 2.

    No pun intended.

  3. 3.

    That the Old One does not play dice,

References

  1. Minkowski, H.: Space and time, in [2, pp. 73–91]

    Google Scholar 

  2. Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity. A Collection of Original Memoirs on the Special and General Theory of Relativity, translated by W. Perrett and G.B. Jeffery. Dover, New York (1952)

    Google Scholar 

  3. Schrödinger, E.: The continuous transition from micro- to macro-mechanics. Naturwissenschaften 28, 664–666 (1926)

    Article  Google Scholar 

  4. Schrödinger, E.: What is an elementary particle? Endeavour 109–116 (July 1950)

    Google Scholar 

  5. Schrödinger, E.: Are there quantum jumps? Br. J. Philos. Sci. 3, 109–123 (1952)

    Article  Google Scholar 

  6. Casimir, H.B.G.: Haphazard Reality. Harper & Row, New York (1983). Appendix A

    Google Scholar 

  7. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928)

    Article  Google Scholar 

  8. von Neumann, J.: Mathematische Grundlagen der Quanten-mechanik. Springer, Berlin (1932). English translation: The Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955)

    Google Scholar 

  9. Boeyens, J.C.A.: Chemical Cosmology. www.springer.com (2010)

    Book  Google Scholar 

  10. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)

    Article  Google Scholar 

  11. Schrödinger, E.: Über eine bemerkenswerte Eigenschaft eines einzelnen Elektrons. Z. Phys. 12, 13–23 (1922)

    Google Scholar 

  12. Veblen, O.: Projektive Relativitätstheorie. Springer, Berlin (1933). English translation in [9]

    Google Scholar 

  13. Holland, P.: Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  14. Primas, H., Müller-Herold, U.: Elementare Quantenchemie. Teubner, Stuttgart (1984)

    Google Scholar 

  15. Boeyens, J.C.A.: Chemistry in four dimensions. Struct. Bond. 148, 25–47 (2013)

    Article  CAS  Google Scholar 

  16. Boeyens, J.C.A.: New Theories for Chemistry. Elsevier, Amsterdam (2003)

    Google Scholar 

  17. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  CAS  Google Scholar 

  18. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)

    Article  CAS  Google Scholar 

  19. Herbert, N.: Quantum Reality. Rider, London (1985)

    Google Scholar 

  20. Bell, J.S.: On the Einstein, Podolsky and Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  21. Dewdney, C., Holland, P.R., Kyprianidis, A., Vigier, J.P.: Spin and non-locality in quantum mechanics. Nature 336, 536–544 (1988)

    Article  CAS  Google Scholar 

  22. Goldstein, H.: Classical Mechanics, 2nd edn., p. 301. Addison-Wesley, Reading (1980)

    Google Scholar 

  23. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Article  CAS  Google Scholar 

  24. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)

    Article  CAS  Google Scholar 

  25. Born, M.: Albert Einstein Max Born Brief Wechsel, p. 252. Nyphenburge, München (1969)

    Google Scholar 

  26. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    Google Scholar 

  27. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    Google Scholar 

  28. Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008)

    Book  Google Scholar 

  29. Boeyens, J.C.A.: The periodic electronegativity table. Z. Naturforsch. 63b, 199–209 (2008)

    Google Scholar 

  30. Primas, H.: Chemistry, Quantum Mechanics and Reductionism, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  31. Synge, J.L.: The gravitational field of a particle. Proc. R. Ir. Acad. A 53, 83–114 (1950)

    Google Scholar 

  32. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitz.ber. Preuss. Akad. Wiss. 142–148 (1917)

    Google Scholar 

  33. de Sitter, W.: On the relativity of inertia. Remarks concerning EINSTEIN’s latest hypothesis. Proc. Kon. Acad. Wet. Amst. 19, 1217–1225 (1917)

    Google Scholar 

  34. Stillwell, J.: Geometry of Surfaces, p. 64. Springer, New York (1992)

    Book  Google Scholar 

  35. Boeyens, J.C.A., Levendis, D.C.: Number Theory and the Periodicity of Matter. www.springer.com (2008)

    Book  Google Scholar 

  36. Boeyens, J.C.A.: The geometry of quantum events. Specul. Sci. Technol. 15, 192–210 (1992)

    CAS  Google Scholar 

  37. Kaluza, Th.: Zum Unitätsproblem der Physik. Sitz.ber. Preuss. Akad. Wiss. 966–973 (1921)

    Google Scholar 

  38. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895–906 (1927)

    Google Scholar 

  39. Klein, O.: The atomicity of electricity as a quantum law. Nature 118, 516 (1926)

    Article  CAS  Google Scholar 

  40. Veblen, O., Hoffmann, B.: Projective relativity. Phys. Rev. 36, 810–822 (1930)

    Article  Google Scholar 

  41. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73–77 (1935)

    Article  CAS  Google Scholar 

  42. Deutsch, D.: The Beginning of Infinity. Viking, New York (2011)

    Google Scholar 

  43. Stoner, E.C.: The distribution of electrons among atomic levels. Philos. Mag. 48, 719–736 (1924)

    CAS  Google Scholar 

  44. Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronen-gruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765–783 (1925)

    Article  CAS  Google Scholar 

  45. Dirac, P.A.M.: On the theory of quantum mechanics. Proc. R. Soc. A 112, 661–677 (1926)

    Article  CAS  Google Scholar 

  46. Boeyens, J.C.A.: Emergent properties in Bohmian chemistry, in [47, pp. 191–215]

    Google Scholar 

  47. Putz, M.V. (ed.) Quantum Frontiers of Atoms and Molecules. Nova, New York (2011)

    Google Scholar 

  48. Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  49. Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. Kon. Acad. Wet. Amst. 6, 809–831 (1904)

    Google Scholar 

  50. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A 167, 148–169 (1938)

    Article  CAS  Google Scholar 

  51. Nettel, S.: Wave Physics. Springer, Berlin (1992)

    Book  Google Scholar 

  52. Haken, H., Wolf, H.C.: The Physics of Atoms and Quanta, translated by W.D. Brewer. Springer, Berlin (1994)

    Book  Google Scholar 

  53. Margenau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry. Van Nostrand, New York (1943)

    Google Scholar 

  54. Cox, B., Forshaw, J.: The Quantum Universe. Da Capo Press, Boston (2011)

    Google Scholar 

  55. Bohm, D.: Quantum Theory, Dover, New York (1989)

    Google Scholar 

  56. Mermin, N.D.: Quantum mysteries for anyone. J. Philos. 78, 397–408 (1981)

    Article  Google Scholar 

  57. Wheeler, J.A.: in [58, p. 3]

    Google Scholar 

  58. Butts, R.E., Hintikka, J.: Foundational problems in the special sciences. Reidel, Dordrecht (1977)

    Book  Google Scholar 

  59. Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453–468 (1966)

    Article  CAS  Google Scholar 

  60. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–217 (1954)

    Article  Google Scholar 

  61. Feynman, R.P.: The Character of Physical Law, p. 129. MIT, Cambridge (1967)

    Google Scholar 

  62. Popper, K.R.: Quantum Theory and the Schism in Physics. Routledge, London (1995)

    Google Scholar 

  63. Wong, C.W.: Introduction to Mathematical Physics. Oxford University Press, Oxford (1991)

    Google Scholar 

  64. Feynman, R.P.: QED Penguin Books, London (1990)

    Google Scholar 

  65. Sommerfeld, A.: Atombau und Spektralllinien, 4th edn. Vieweg, Braunschweig (1921)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boeyens, J.C.A. (2013). The Forgotten Dimension. In: The Chemistry of Matter Waves. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7578-7_6

Download citation

Publish with us

Policies and ethics