Skip to main content

High-throughput SNP Profiling of Genetic Resources in Crop Plants Using Genotyping Arrays

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Using high-throughput DNA sequencing technologies, it is now possible to quickly and reliably identify many thousands to millions of SNPs in a species. They can subsequently serve as markers for the development of large genotyping arrays. Large numbers of individuals derived from gene banks, landraces, breeding material and varieties can be genotyped with such arrays at an extremely high marker density in a fast, efficient and highly reproducible way. Based on our experience, we provide in this chapter an overview on various aspects that have to be considered within the process of developing such genotyping arrays, including the SNP discovery and/or collection, possible selection criteria for SNPs to be put on the array, SNP scoring and allele calling as well as data assembly for the analysis of millions of genotypes. To make the best use of these genotyping data, it will be very important to establish databases containing marker data from many genotyping experiments in order to simplify downstream data processing for scientific as for breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Arai-Kichise Y, Shiwa Y, Nagasaki H et al (2011) Discovery of genome-wide DNA polymorphisms in a land race cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachlava E, Taylor CA, Tang S et al (2012) SNP discovery and development of a high-density genotyping array for sunflower. PLoS One 7:e29814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barchi L, Lanteri S, Portis E et al (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P et al (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 24:280

    Article  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M et al (2011) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS One 7:e31745

    Article  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J et al (2010) Population and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev. Genet 12:499–510

    CAS  Google Scholar 

  • Deschamps S, la Rota M, Ratashak JP et al (2010) Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina genome analyzer. Plant Genome 3:53–68

    Article  CAS  Google Scholar 

  • Durstewitz G, Polley A, Plieske J et al (2010) SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53:948–956

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felcher KJ, Coombs JJ, Massa AN et al (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7:e36347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2010) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  Google Scholar 

  • Fu Y, Springer NM, Gerhardt DJ et al (2010) Repeat substraction-mediated sequence capture from a complex genome. Plant J 62:898–909

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A et al (2011) A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ et al (2009a) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES et al (2009b) Large-scale discovery of gene-enriched SNPs. Plant Genome 2:121–133

    Article  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Ren H et al (2006) Whole-genome genotyping. Methods Enzymol 410:359–76

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Kang Y, Torres-Jerez I et al (2011) Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics 12:350

    Article  CAS  PubMed Central  Google Scholar 

  • Hasenmeyer G, Schmutzer T, Seidel M et al (2011) From RNA-seq to large-scale genotyping: genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131

    Article  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in land races. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lu T, Han B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet. doi: 10.1016/j.tig.2012.12.001

    Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J et al (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Cannon SB, Song Q et al (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotech J 7:312–317

    Article  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D et al (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiao Y, Zhao H, Ren L et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li R, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Shah T, Hao Z et al (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS One 6:e24861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGall GH, Christians FC (2002) High-density genechip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol 77:21–42

    CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myles S, Boyko AR, Owens CL et al (2010a) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108:3530–3535

    Article  Google Scholar 

  • Myles S, Chia JM, Hirwitz B et al (2010b) Rapid genomic characterization of the genus Vitis. PLoS One 5:e8219

    Article  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed Central  PubMed  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM et al (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peiffer DA, Gunderson KL (2009) Design of tag SNP whole genome genotyping arrays. Methods Mol Biol 529:51–61

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat. Genome Biol 12:R88

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    Article  CAS  PubMed  Google Scholar 

  • Sim SC, Durstewitz G, Plieske J et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steemers FJ, Chang W, Lee G et al (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P et al (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    Article  PubMed  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  PubMed  Google Scholar 

  • Truong HT, Ramos AM, Yalcin F et al (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7:e37565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Inghelandt D, Reif JC, Dhillon BS et al (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20

    Article  PubMed  Google Scholar 

  • Van Orsouw NJ, Hogers RCJ, Janssen A et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:e1172

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Poecke R, Maccaferri M, Tang J et al (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotech J 11:809-817

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Bassil N, Scalabrin S et al (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ren C, Joshi T et al (2010) SNP discovery by high-throughput sequencing in soybean. BMC Genomics 11:469

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML et al (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 24:e8451

    Article  Google Scholar 

  • You FM, Huo N, Deal KR et al (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The assistance of the technical staff at TraitGenetics during SNP marker development and the analysis of many samples using genotyping arrays is acknowledged. Large scale genotyping research at TraitGenetics has in part been funded by several grants from the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Ganal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ganal, M. et al. (2014). High-throughput SNP Profiling of Genetic Resources in Crop Plants Using Genotyping Arrays. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_6

Download citation

Publish with us

Policies and ethics