Skip to main content

Enhanced Ion Transport in 2-nm Silica Nanochannels

  • Conference paper
  • First Online:
Transport and Reactivity of Solutions in Confined Hydrosystems

Abstract

Fluidic nanochannels with 1–2 nm in size are functional mimics of protein channels, and have recently attracted significant attention for exploring the transport of ions and molecules in confined liquids. Here we report ion transport in 2 nm deep nanochannels fabricated by standard semiconductor manufacturing processes. Ion transport in these nanochannels is dominated by surface charge until the ion concentration exceeds 100 mM. At low concentrations, proton mobility increases by a factor of four over its bulk value, possibly due to overlap of the two hydration layers adjacent to hydrophilic surfaces. The mobility of K+/Na + ions also increases as the bulk concentration decreases, although the reasons are not completely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267

    Article  CAS  Google Scholar 

  2. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Article  Google Scholar 

  3. Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103

    Article  CAS  Google Scholar 

  4. Kim SJ, Wang YC, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501

    Article  Google Scholar 

  5. Karnik R, Fan R, Yue M, Li DY, Yang PD, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  CAS  Google Scholar 

  6. Fan R, Yue M, Karnik R, Majumdar A, Yang PD (2005) Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys Rev Lett 95:086607

    Article  Google Scholar 

  7. Fan R, Huh S, Yan R, Arnold J, Yang PD (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307

    Article  CAS  Google Scholar 

  8. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114

    Article  Google Scholar 

  9. Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551

    Article  CAS  Google Scholar 

  10. Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556

    Article  CAS  Google Scholar 

  11. Lu MC, Satyanarayana S, Karnik R, Majumdar A, Wang CC (2006) A mechanical-electrokinetic battery using a nano-porous membrane. J Micromech Microeng 16:667–675

    Article  CAS  Google Scholar 

  12. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6:2232–2237

    Article  Google Scholar 

  13. Liu HT, He J, Tang JY, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67

    Article  CAS  Google Scholar 

  14. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  15. Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  CAS  Google Scholar 

  16. Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25:174–181

    Article  CAS  Google Scholar 

  17. Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5:837–844

    Article  CAS  Google Scholar 

  18. Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol 5:848–852

    Article  CAS  Google Scholar 

  19. Raider SI, Gregor LV, Flitsch R (1973) Transfer of mobile ions from aqueous-solutions to silicon dioxide surface. J Electrochem Soc 120:425–431

    Article  CAS  Google Scholar 

  20. Jensen KL, Kristensen JT, Crumrine AM, Andersen MB, Bruus H, Pennathur S (2011) Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys Rev E 83:056307

    Article  Google Scholar 

  21. Baldessari F (2008) Electrokinetics in nanochannels – Part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Sci 325:526–538

    Article  CAS  Google Scholar 

  22. Israelachvili J (2003) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  23. von Grotthuss CJD (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73

    Google Scholar 

  24. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  25. Kunst M, Warman JM (1980) Proton mobility in ice. Nature 288:465–467

    Article  CAS  Google Scholar 

  26. Pomes R, Roux B (2002) Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys J 82:2304–2316

    Article  CAS  Google Scholar 

  27. Dellago C, Naor MM, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902

    Article  Google Scholar 

  28. Du Q, Freysz E, Shen YR (1994) Vibrational-spectra of water-molecules at quartz water interfaces. Phys Rev Lett 72:238–241

    Article  CAS  Google Scholar 

  29. Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306:249–250

    Article  CAS  Google Scholar 

  30. Koplik J, Banavar JR, Willemsen JF (1989) Molecular-dynamics of fluid-flow at solid-surfaces. Phys Fluids A 1:781–794

    Article  CAS  Google Scholar 

  31. Peter C, Hummer G (2005) Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J 89:2222–2234

    Article  CAS  Google Scholar 

  32. Leng YS, Cummings PT (2006) Hydration structure of water confined between mica surfaces. J Chem Phys 124:074711

    Article  Google Scholar 

  33. Mattke T, Kecke HJ (1998) Molecular dynamic simulations of single, interacting, and sheared double layers 1. Configuration of a double layer. J Colloid Interface Sci 208:555–561

    Article  CAS  Google Scholar 

Download references

Note: This work is a revision of a previous paper titled “Anomalous ion transport in 2-nm hydrophilic nanochannels”, which has been published in Nature Nanotechnology 5, 848–852, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanhua Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Duan, C. (2014). Enhanced Ion Transport in 2-nm Silica Nanochannels. In: Mercury, L., Tas, N., Zilberbrand, M. (eds) Transport and Reactivity of Solutions in Confined Hydrosystems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7534-3_7

Download citation

Publish with us

Policies and ethics