Skip to main content

Static and Dynamic Capillarity in Silicon Based Nanochannels

  • Conference paper
  • First Online:
Transport and Reactivity of Solutions in Confined Hydrosystems

Abstract

In this chapter we review the fabrication of silicon based nanochannels and their use in capillarity studies. Static capillarity measurements of the pressure in isolated liquid plugs confined in hydrophilic nanochannels, confirm the existence of capillary negative pressure, quantitatively in accordance with the Young-Laplace equation. The negative pressure can be quantified through measurement of the elasto-capillary deformation of the channel capping due to the pressure difference with the atmospheric pressure. By measuring the capillary filling dynamics in nanochannels of uniform and accurately defined height, different (apparent) viscosity effects in confinement have been revealed. One effect (visible in insulating sub-100-nm channels) is likely to be related to the influence of the electrical double layer (an electroviscous effect), while the other effect (visible in conductive sub-50 nm channels) seems to be related to a decrease in the effective channel due to a thin immobile layer close to the polar or charged channel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern MB, Geis MW, Curtin JE (1997) Nanochannel fabrication for chemical sensors. J Vac Sci Technol B 15:2887–2891

    Article  CAS  Google Scholar 

  2. Turner SW, Perez AM, Lopez A, Craighead HG (1998) Monolithic nanofluid sieving structures for DNA manipulation. J Vac Sci Technol B 16:3835–3840

    Article  CAS  Google Scholar 

  3. Han J, Craighead HG (1999) Entropic trapping and sieving of long DNA molecules in a nanofluidic channel. J Vac Sci Technol A 17:2142–2147

    Article  CAS  Google Scholar 

  4. Haneveld J, Jansen H, Berenschot E, Tas N, Elwenspoek M (2003) Wet anisotropic etching for fluidic 1D nanochannels. J Micromech Microeng 13:S62–S66

    Article  CAS  Google Scholar 

  5. Haneveld J (2006) Nanochannel fabrication and characterization using bond micromachining. Ph.D. Thesis, University of Twente

    Google Scholar 

  6. Persson F, Thamdrup LH, Mikkelsen MBL, Jaarlgard SE, Skafte-Pedersen P, Bruus H, Kristensen A (2007) Double thermal oxidation scheme for the fabrication of SiO2 nanochannels. Nanotechnology 18(245301):1–4

    Google Scholar 

  7. Haneveld J, Tas NR, Brunets N, Jansen HV, Elwenspoek M (2008) Capillary filling of sub-10 nm nanochannels. J Appl Phys 104(014309):1–6

    Google Scholar 

  8. Huygens C (1672) An extract of a letter of M. Hugens to the author of the Journal des Scavans of July 25. 1672. Attempting to render the cause of that odd phenomenon of the quicksilver remaining suspended far above the usual height in Torricellian experiment. Philos Trans 7:5027–5030

    Article  Google Scholar 

  9. Sir Isaac Newton (1721) Opticks: or a treatise of the reflections, refraction, inflections and colours of light, 3rd Book, 3rd edn, pp 365–366

    Google Scholar 

  10. Dixon HH, Joly J (1895) On the ascent of sap. Philos Trans R Soc Lond B 186:563–576

    Article  Google Scholar 

  11. Berthelot M (1850) Sur quelques phénomènes de dilatation forcée des liquides. Annales de chimie et de Physique 30:232–237

    Google Scholar 

  12. Briggs LJ (1950) Limiting negative pressure of water. J Appl Phys 21:721–722

    Article  CAS  Google Scholar 

  13. Fisher JC (1948) The fracture of liquids. J Appl Phys 19:1062–1067

    Article  Google Scholar 

  14. Kelvin L (1870) On the equilibrium vapour at a curved surface of liquid. Proc R Soc Edinb 7:63–68

    Google Scholar 

  15. Wiig EO, Juhola AJ (1949) The adsorption of water vapor on activated charcoal. J Am Chem Soc 71:561–568

    Article  CAS  Google Scholar 

  16. Fisher LR, Israelachvili JN (1980) Determination of the capillary pressure in menisci of molecular dimensions. Chem Phys Lett 76:325–328

    Article  CAS  Google Scholar 

  17. Tas NR, Mela P, Kramer T, Berenschot JW, van den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3:1537–1540

    Article  CAS  Google Scholar 

  18. van Honschoten JW, Escalante M, Tas NR, Elwenspoek M (2009) Formation of liquid menisci in flexible nanochannels. J Colloid Interface Sci 329:133–139

    Article  Google Scholar 

  19. Tas NR, Escalante M, van Honschoten JW, Jansen HV, Elwenspoek M (2010) Capillary negative pressure measured by nanochannel collapse. Langmuir 26:1473–1476

    Article  CAS  Google Scholar 

  20. Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39:1073–1095

    Article  CAS  Google Scholar 

  21. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  22. Hibara A, Saito T, Kim H-B, Tokeshi M, Ooi T, Nakao M, Kitamori T (2002) Nanochannels on a fused-silica microchip and liquid properties investigated by time-resolved fluorescence measurements. Anal Chem 74:6170–6176

    Article  CAS  Google Scholar 

  23. Tas NR, Haneveld J, Jansen HV, Elwenspoek M, van den Berg A (2004) Capillary filling speed of water in nanochannels. Appl Phys Lett 85:3274–3276

    Article  CAS  Google Scholar 

  24. Han A, Mondin G, Hegelbach NG, de Rooij NF, Staufer U (2006) Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J Colloid Interface Sci 293:151–157

    Article  CAS  Google Scholar 

  25. van Delft KM, Eijkel JCT, Mijatovic D, Druzhinina TS, Rathgen H, Tas NR, van den Berg A, Mugele F (2007) Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett 7:345–350

    Article  Google Scholar 

  26. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883

    Article  CAS  Google Scholar 

  27. Levine S, Marriott JR, Robinson K (1975) Theory of Electrokinetic flow in a narrow parallel-plate channel. J Chem Soc Faraday Trans 2(71):1–11

    Google Scholar 

  28. Mortensen NA, Kristensen A (2008) Electroviscous effects in capillary filling of nanochannels. Appl Phys Lett 92(063110):1–3

    Google Scholar 

  29. Jansen KGH, Hoang HT, Floris J, de Vries J, Tas NR, Eijkel JCT, Hankemeier T (2008) Anal Chem 80:8095–8101

    Article  Google Scholar 

  30. Thamdrup LH, Persson F, Bruus H, Kristensen A, Flyvbjerg H (2007) Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Appl Phys Lett 91(163505):1–3

    Google Scholar 

  31. Derjaguin BV, Churaev NV (1974) Structural component of disjoining pressure. J Colloid Interface Sci 49:249–255

    Article  Google Scholar 

  32. Israelachvili JN, Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 74:975–1001

    Article  CAS  Google Scholar 

  33. Pashley RM (1981) Hydration forces between mica surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 80:153–162

    Article  CAS  Google Scholar 

  34. Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+ and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83:531–546

    Article  CAS  Google Scholar 

  35. Pashley RM, Israelachvili JN (1984) Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. J Colloid Interface Sci 101:511–523

    Article  CAS  Google Scholar 

  36. Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408

    Article  CAS  Google Scholar 

  37. Churaev NV, Sobolev VD, Zorin ZM (1971) Special discussion in thin liquid films and boundary layers. Academic, New York, pp 213–220

    Google Scholar 

  38. Israelachvili JN (1986) Measurement of the viscosity of liquids in very thin films. J Colloid Interface Sci 110:263–271

    Article  CAS  Google Scholar 

  39. Raviv U, Laurat P, Klein J (2001) Fluidity of water confined to subnanometre films. Nature 413:51–54

    Article  CAS  Google Scholar 

  40. Raviv U, Klein J (2002) Fluidity of bound hydration layers. Science 297:1540–1543

    Article  CAS  Google Scholar 

  41. Li T-D, Gao J, Szoszkiewicz R, Landman U, Riedo E (2007) Structures and viscous water in subnanometer gaps. Phys Rev B 75(115415):1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Tas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tas, N., Brunets, N., van Honschoten, J.W., Haneveld, J., Jansen, H.V. (2014). Static and Dynamic Capillarity in Silicon Based Nanochannels. In: Mercury, L., Tas, N., Zilberbrand, M. (eds) Transport and Reactivity of Solutions in Confined Hydrosystems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7534-3_3

Download citation

Publish with us

Policies and ethics