Skip to main content

Crystal Growth and Phase Equilibria in Porous Materials

  • Conference paper
  • First Online:
Transport and Reactivity of Solutions in Confined Hydrosystems

Abstract

In numerous research areas there is considerable interest in the phase changes occurring in pore solutions. First, the pressure generated by crystal growth of salts in confined spaces of porous materials is generally recognized as a major damage mechanism. Second, dissolved salts strongly affect the moisture retention and transport properties of porous media. This report briefly reviews recent advances in the treatment of phase equilibria of salts in porous substrates. The first part deals with the theory of crystallization pressure. In the second part model approaches for the calculation of thermodynamic properties in mixed electrolyte solutions and the calculation of phase equilibria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goudie A, Viles H (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  2. Doehne E (2002) Salt weathering: a selective review. Geol Soc Lond Spec Publ 205:51–64

    Article  CAS  Google Scholar 

  3. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, pp 227–316

    Chapter  Google Scholar 

  4. Evans IS (1970) Salt crystallization and rock weathering: a review. Rev Geomorph Dyn 19:153–177

    Google Scholar 

  5. Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  CAS  Google Scholar 

  6. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  CAS  Google Scholar 

  7. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  CAS  Google Scholar 

  8. Steiger M (2005) Crystal growth in porous materials − I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  CAS  Google Scholar 

  9. Becker GF, Day AL (1916) Note on the linear force of growing crystals. J Geol 24:313–333

    Article  CAS  Google Scholar 

  10. Correns CW, Steinborn W (1939) Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. Z Krist A 101:117–135

    CAS  Google Scholar 

  11. Coussy O (2004) Poromechanics. Wiley, Chichester

    Google Scholar 

  12. Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt. Geol Soc Lond Spec Publ 331:61–77

    Article  CAS  Google Scholar 

  13. Espinosa-Marzal RM, Hamilton A, McNall M, Whitaker K, Scherer GW (2011) The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J Mater Res 26:1472–1481

    Article  CAS  Google Scholar 

  14. Chatterji S, Jensen AD (1989) Efflorescence and breakdown of building materials. Nordic Concr Res 8:56–61

    Google Scholar 

  15. Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306

    Article  CAS  Google Scholar 

  16. Shahidzadeh-Bonn N, Desarnaud J, Bertrand F, Chateau X, Bonn D (2010) Damage in porous media due to salt crystallization. Phys Rev E 81:066110

    Article  Google Scholar 

  17. Espinosa Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56:605–621

    Article  CAS  Google Scholar 

  18. Steiger M (2005) Crystal growth in porous materials − II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  CAS  Google Scholar 

  19. Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour Res 37:1257–1276

    Article  Google Scholar 

  20. Sghaier N, Prat M, Ben NS (2006) On the influence of sodium chloride concentration on equilibrium contact angle. Chem Eng J 122:47–53

    Article  CAS  Google Scholar 

  21. Shahidzadeh-Bonn N, Rafaï S, Bonn D, Wegdam G (2008) Salt crystallization during evaporation: impact of interfacial properties. Langmuir 24:8599–8605

    Article  CAS  Google Scholar 

  22. Bouzid M, Mercury L, Lassin A, Matray J-M, Azaroual M (2011) In-pore tensile stress by drying-induced capillary bridges inside porous materials. J Colloid Interface Sci 355:494–502

    Article  CAS  Google Scholar 

  23. Steiger M, Linnow K, Juling H, Gülker G, El Jarad A, Brüggerhoff S, Kirchner D (2008) Hydration of MgSO4 · H2O and generation of stress in porous materials. Cryst Growth Des 8:336–343

    Article  CAS  Google Scholar 

  24. Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 75–153

    Google Scholar 

  25. Harvie CE, Møller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723–751

    Article  CAS  Google Scholar 

  26. Steiger M, Kiekbusch J, Nicolai A (2008) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr Build Mater 22:1841–1850

    Article  Google Scholar 

  27. Monnin C (1989) An ion interaction model for the volumetric properties of natural waters: density of the solution and partial molal volumes of electrolytes to high concentration at 25 °C. Geochim Cosmochim Acta 53:1177–1188

    Article  CAS  Google Scholar 

  28. Criss CM, Millero FJ (1996) Modeling the heat capacities of aqueous 1–1 electrolyte solutions with Pitzer’s equations. J Phys Chem 100:1288–1294

    Article  CAS  Google Scholar 

  29. Silcock HL (1979) Solubilities of inorganic and organic compounds, vol 3. Ternary and multicomponent systems of inorganic substances, vol 3. Pergamon Press, Oxford

    Google Scholar 

  30. Steiger M, Linnow K, Ehrhardt D, Rohde M (2011) Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl−––SO4 2−–H2O systems with implications for mars. Geochim Cosmochim Acta 75:3600–3626

    Article  CAS  Google Scholar 

  31. Sawdy A, Price C (2005) Salt damage at Cleeve Abbey, England. Part I: a comparison of theoretical predictions and practical observations. J Cult Herit 6:125–135

    Article  Google Scholar 

  32. Hamilton A, Hall C, Pel L (2008) Sodium sulfate heptahydrate: direct observation of crystallization in a porous material. J Phys D Appl Phys 41:212002

    Article  Google Scholar 

  33. Saidov TA, Espinosa-Marzal RM, Pel L, Scherer GW (2012) Nucleation of sodium sulfate heptahydrate on mineral substrates studied by nuclear magnetic resonance. J Cryst Growth 338:166–169

    Article  CAS  Google Scholar 

  34. Steiger M (2000) Total volumes of crystalline solids and salt solutions. In: Price CA (ed) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials, European commission, research report 11., pp 53–63

    Google Scholar 

  35. Zilberbrand M (1999) On equilibrium constants for aqueous geochemical reactions in water unsaturated soils and sediments. Aquat Geochem 5:195–206

    Article  CAS  Google Scholar 

  36. Monnin C (1990) The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO4-H2O to 200 °C and 1 kbar, and to high NaCl concentration. Geochim Cosmochim Acta 54:3265–3282

    Article  CAS  Google Scholar 

  37. Steiger M (2006) Freezing of salt solutions in small pores. In: Konsta-Gdoutos MS (ed) Measuring, monitoring and modelling concrete properties. Springer, Dordrecht, pp 661–668

    Chapter  Google Scholar 

  38. Steiger M, Linnow K (2009) Phase equilibria in mesoporous materials. In: Franke L, Deckelmann G, Espinosa-Marzal R (eds) Simulation of time dependent degradation of porous materials. Cuvillier Verlag, Göttingen, pp 183–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Steiger, M. (2014). Crystal Growth and Phase Equilibria in Porous Materials. In: Mercury, L., Tas, N., Zilberbrand, M. (eds) Transport and Reactivity of Solutions in Confined Hydrosystems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7534-3_16

Download citation

Publish with us

Policies and ethics