Skip to main content

Theory of GNSS Radio Occultation

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

  • 3695 Accesses

Abstract

In this chapter, a brief history of the radio occultation remote sensing technique is introduced. The physical principles of GNSS radio occultation (RO) technique are discussed, and the detailed GNSS RO processing steps are presented finally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo Y-H, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission-early results. Bull Am Meteorol Soc 89:313–333

    Article  Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effect on the Global Positioning System observables and means of modeling them. Manuscr Geod 18:280–289

    Google Scholar 

  • Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi:10.1029/2005GL023109

    Article  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics. Electromagnetic theory of propagation interference and diffraction of light. Pergamon Press, Oxford/New York

    Google Scholar 

  • Eliseev SD, Yakovlev OI (1989) On the radio occultation measurements in the Earth’s atmosphere using millimeter radio waves (in Russian). Izv Vyssh Uchebn Zaved Radiofiz 32:3–10

    Google Scholar 

  • Feng D, Herman B, Exner M, Schreiner B, Anthes R, Ware R (1995) Space-borne GPS remote sensing for atmospheric research. Proc Synth Apert Radar Passiv Microw Sens 2584:448–455

    Article  Google Scholar 

  • Fishbach FF (1965) A satellite method for temperature and pressure below 24 km. Bull Am Meteorol Soc 9:528–532

    Google Scholar 

  • Fjeldbo G, Eshleman VR (1965) The bistatic radar-occultation method for the study of planetary atmosphere. J Geophys Res 70(1965):3217–3226

    Article  Google Scholar 

  • Fjeldbo G, Eshleman VR (1968) The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet Space Sci 16:1035–1059

    Article  Google Scholar 

  • Fjeldbo GF, Eshleman VR, Kliore AJ (1971) The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140

    Google Scholar 

  • Fjeldbo (Lindal) G, Kliore AJ, Seidel B, Sweetnam D, Cain D (1975) The Pioneer 10 radio occultation measurement of the ionosphere of Jupiter. Astron Astrophys 39:91

    Google Scholar 

  • Galas R, Wickert J, Burghardt W (2001) High rate low latency GPS ground tracking network for CHAMP. Phys Chem Earth (A) 26:649–652

    Article  Google Scholar 

  • Gorbunov ME (2002) Canonical transform method for processing radio occultation data in lower troposphere. Radio Sci 37(5):1076. doi:10.1029/2000RS002592

    Google Scholar 

  • Gorbunov ME, Gurvich AS (1998) Microlab-1 experiment: multipath effects in the lower troposphere. J Geophys Res 103(D12):13,819–13,826

    Google Scholar 

  • Gurvich AS, Krasil'nikova TG (1987) On the use of navigational satellites in radio occultation measurements in the Earth’s atmosphere (in Russian). Issled Zemli Kosmosa 6:89–93

    Google Scholar 

  • Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: results from the GPS/MET experiment. Radio Sci 33(1):175–190

    Article  Google Scholar 

  • Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64:451–469

    Article  Google Scholar 

  • Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:D06109. doi:10.1029/2003JD003909

    Article  Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172. doi:10.1029/90JA02125

    Article  Google Scholar 

  • Hinson DP, Flasar FM, Schinder AJKPJ, Twicken JD, Herrera RG (1997) Jupiter’s ionosphere: results from the first Galileo radio occultation experiment. Geophys Res Lett 24(17):2107–2110

    Article  Google Scholar 

  • Ho S-P, Kirchengast G, Leroy S, Wickert J, Mannucci AJ, Steiner A, Hunt D, Schreiner W, Sokolovskiy S, Ao C, Borsche M, von Engeln A, Foelsche U, Heise S, Iijima B, Kuo Y-H, Kursinski ER, Pirscher B, Ringer M, Rocken C, Schmidt T (2009) Estimating the uncertainty of using GPS radio occultation data for climate monitoring: intercomparison of CHAMP refractivity climate records 2002–2006 from different data centers. J Geophys Res 114:D23107. doi:10.1029/2009JD011969

    Article  Google Scholar 

  • Hocke KA, Pavelyev AG, Yakovlev OI, Barthes L, Jakowski N (1999) Radio occultation data analysis by the radioholographic method. J Atmos Sol Terr Phys 61(15):1169–2117

    Article  Google Scholar 

  • Howard HT, Tyler GL, Esposito PB, Anderson JD, Reasenberg RD, Shapiro II, Fjeldbo G, Kliore AJ, Levy GS, Brunn DI, Dickinson R, Edelson RE, Martin WL, Postal RB, Seidel B, Sesplaukis TT, Shirley DL, Stelzried CT, Sweetnam DN, Wood GE, Zygielbaum AI (1974) Mercury: results on Mass, radius, ionosphere and atmosphere obtained from the Mariner 10 dual frequency radio signals. Science 185(4146):179–183

    Article  Google Scholar 

  • Ivanov GS, Kolosov MA, Savich NA et al (1979) Daytime ionosphere of Venus as studied with Venera 9 and 10 dual-frequency experiments. Icarus 39(2):209

    Article  Google Scholar 

  • Jensen AS, Lohmann M, Benzon H-H, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi:10.1029/2002RS002763

    Article  Google Scholar 

  • Jensen AS, Lohmann MS, Nielsen AS, Benzon H-H (2004) Geometrical optics phase matching of radio occultation signals. Radio Sci 39:RS3009. doi:10.1029/2003RS002899

    Article  Google Scholar 

  • Kalashnikov IE, Yakovlev OI (1978) Possibility of investigation of the Earth’s atmosphere using the radio occultation method (in Russian). Kosm Issled 16:943–946 (English translation, Cosm Res 16:943–946, 1978)

    Google Scholar 

  • Kliore AJ (1969) Some remarks on meteorological measurements with occultation satellites. In: Space research, vol IX. North-Holland, Publishing Company, Amsterdam, pp 590–602

    Google Scholar 

  • Kliore A, Cain DL, Levy GS, Eshleman VR, Fjeldbo G, Drake FD (1965) Occultation experiment: results of the first direct measurement of Mar’s atmosphere and ionosphere. Science 149:1243–1248

    Article  Google Scholar 

  • Kliore A, Levy GS, Cain DL, Fjeldbo G, Rasool SI (1967) Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science 158(3809):1683–1688

    Article  Google Scholar 

  • Kliore AJ, Fjeldbo G, Siedel BL, Sweetnam DN, Sesplaukis TT, Woiceshyn PM, Rasool SI (1975) The atmosphere of Io from Pioneer 10 radio occultation measurements. Icarus 24:407–410

    Article  Google Scholar 

  • Kliore AJ, Patel IR, Lindal GF, Sweetnam DN, Hotz HB, Waite JH Jr, McDonough TR (1980) Structure of the ionosphere and atmosphere of Saturn From Pioneer 11 Saturn radio occultation. J Geophys Res 85(A11):5857–5870. doi:10.1029/JA085iA11p05857

    Article  Google Scholar 

  • Kliore AJ, Hinson DP, Flasar FM, Nagy AF, Cravens TE (1997) The ionosphere of Europa from Galileo radio occultations. Science 277:355–358

    Article  Google Scholar 

  • Kolosov MA, Yakovlev OI, Trusov BP et al (1976) Radio occultation investigation of the atmosphere of Venus by use of satellites Venera-9 and Venera-10. Radio Eng Electron Phys 21(8):1585

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102(D19):23429–23465

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Leroy SS, Herman B (2000) The GPS radio occultation technique. Terr Atmos Ocean Sci 11:53–114

    Google Scholar 

  • Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL (1983) The atmosphere of Titan: an analysis of the Voyager 1 radio-occultation measurements. Icarus 53:348–363

    Article  Google Scholar 

  • Lindal GF, Lyons JR, Sweetnam DN, Eshleman VR, Hinson DP, Tyler GL (1987) The atmosphere of Uranus: results of radio occultation measurements with voyager 2. J Geophys Res 92:14987–15001

    Article  Google Scholar 

  • Liu AS (1978) On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data. NASA-CR-156848, Nov 1978, Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Lohmann M (2005) Application of dynamical error estimation for statistical optimization of radio occultation bending angles. Radio Sci 40:RS3011. doi:10.1029/2004RS003117

    Article  Google Scholar 

  • Luntama J-P, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the EPS GRAS mission for operational atmospheric applications. Bull Am Meteorol Soc 89:1863–1875

    Article  Google Scholar 

  • Lusignan B, Modrell G, Morrison A, Pomalaza J, Ungar SG (1969) Sensing the Earth’s atmosphere with occultation satellites. Proc IEEE 57(4):458–467

    Article  Google Scholar 

  • Marouf EA, Tyler GL (1986) Detection of two satellites in the Cassini division of Saturn’s rings. Nature 6083:31–35

    Article  Google Scholar 

  • Marouf EA, Tyler GL, Rosen PA (1986) Profiling Saturn rings by radio occultation. ICARUS 68:120–166

    Article  Google Scholar 

  • Mortensen MD, Høeg P (1998) Inversion of GPS occultation measurements using Fresnel diffraction theory. Geophys Res Lett 25(13):2446–2449

    Article  Google Scholar 

  • Mueller II, Beutler G (1992) The international GPS service for geodynamics development and current status. In: Proceedings of the 6th international geodetic symposium on satellite positioning, Columbus, March, pp 823–835

    Google Scholar 

  • Papas CH (1965) Theory of electromagnetic wave propagation. McGraw-Hill, New York

    Google Scholar 

  • Pavelyev AG (1998) On the feasibility of radioholographic investigations of wave fields near the Earth’s radio-shadow zone on the satellite-to-satellite path. J Commun Technol Electron 43(8):875–879

    Google Scholar 

  • Rangaswamy S (1976) Recovery of atmospheric parameters from the Apollo/Soyuz-ATS-F radio occultation data. Geophys Res Lett 3(8):483–486. doi:10.1029/GL003i008p00483

    Article  Google Scholar 

  • Rim HJ, Schutz BE (2002) Geoscience Laser Altimeter System (GLAS) algorithm theoretical basis document version 2.2: Precision Orbit Determination (POD), Center for Space Research, The University of Texas at Austin, October 2002

    Google Scholar 

  • Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866. doi:10.1029/97JD0240

    Article  Google Scholar 

  • Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34:949–966

    Article  Google Scholar 

  • Schreiner W, Rocken C, Sokolovskiy S, Hunt D (2010) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14:13–22. doi:10.1007/s10291-009-0132-5

    Article  Google Scholar 

  • Sokolovskiy SV (2001) Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci 36(3):441–458

    Article  Google Scholar 

  • Tapley BD (1973) Statistical orbit determination theory. In: Tapley BD, Szebehely V (eds) Advances in dynamical astronomy. D. Reidel Publishing Co, Holland, pp 396–425

    Chapter  Google Scholar 

  • Tyler GL, Sweetnam DN, Anderson JD, Borutzki SE, Campbell JK, Kursinski ER, Levy GS, Lindal GF, Lyons JR, Wood GE (1989) Voyager radio science observations of Neptune and Triton. Science 246:1466–1473

    Article  Google Scholar 

  • Vorob'ev VV, Krasil'nikova TG (1994) Estimation of accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Izv Russ Acad Sci Atmos Ocean Phys Engl Transl 29:602–609

    Google Scholar 

  • Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo HK, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S (1996) GPS sounding of the atmosphere: preliminary results. Bull Am Meteorol Soc 77:19–40

    Article  Google Scholar 

  • Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan TK, Melbourne WG, Hocke K (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266

    Article  Google Scholar 

  • Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single difference technique. Geophys Res Lett 29(8):28-1–28-4. doi:10.1029/2001GL13982

    Article  Google Scholar 

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB, Heise S, Huang CY, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20(1):35–50. doi:10.3319/TAO.2007.12.26.01(F3C)

    Article  Google Scholar 

  • Wu JT (1984) Elimination of clock errors in a GPS based tracking system. In: Paper AIAA-84-2052, AIAA/AAS astrodynamics conference, Seattle, August

    Google Scholar 

  • Wu SC, Yunck TP, Thornton CL (1987) Reduced-dynamic technique for precise orbit determination of low Earth satellite. In: Proceedings of AAS/AIAA astrodynamics specialist conference, Paper AAS 87–410, Kalispell, Montana, August 1987

    Google Scholar 

  • Yakovlev OI, Matyugov SS, Vilkov IA (1995) Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links. Radio Sci 30(3):591–602. doi:10.1029/94RS01920

    Article  Google Scholar 

  • Yunck TP, Lindal GF, Liu C-H (1988) The role of GPS in precise Earth observation. In: Proceedings of the IEEE position location and navigation symposium (PLANS 88), 29 November–2 December

    Google Scholar 

  • Yunck T, Liu C-H, Ware R (2000) A history of GPS sounding. Terr Atmos Oceanic Sci 11:1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). Theory of GNSS Radio Occultation. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_5

Download citation

Publish with us

Policies and ethics