Skip to main content

Ground GNSS Atmospheric Sensing

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

  • 3620 Accesses

Abstract

The tropospheric delay is one of major error sources in GNSS positioning, which contributes a bias in height of several centimeters even when simultaneously recorded meteorological data are used in tropospheric models. Nowadays, GNSS has been widely used to determine the zenith tropospheric delay (ZTD) as well as precipitable water vapor (PWV). In this chapter, the theory and methods of ZTD and PWV estimations are introduced from ground GNSS observations. The seasonal, secular and diurnal variations of ZTD and PWV are presented in detail as well their applications in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bevis M, Businger S, Herring TA, Rocken C, Anilies RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S et al (1994) GPS meteorology: mapping Zenith Wet Delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31:L01603. doi:10.1029/2003GL018984

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational. Gordon and Breach, New York, 200 pp

    Google Scholar 

  • Dach R, Dietrich R (2000) Influence of the ocean loading effect on GPS derived precipitable water vapor. Geophys Res Lett 27(18):2953–2956

    Article  Google Scholar 

  • Dai A, Wang J (1999) Diurnal and semidiurnal tides in global surface pressure fields. J Atmos Sci 56:3874–3891

    Article  Google Scholar 

  • Dai A, Wang J, Ware RH, Van Hove T (2002) Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J Geophys Res 107(D10):4090. doi:10.1029/2001JD000642

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro I, Rogers A, Elgered G (1985) Geodesy by radio interferometry effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Deblonde G, Macpherson S, Mireault Y et al (2005) Evaluation of GPS precipitable water over Canada and the IGS network. J Appl Meteorol 44(1):153–166

    Article  Google Scholar 

  • Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838

    Article  Google Scholar 

  • Emardson TR, Elgered G, Johansson JM (1998) Three months of continuous monitoring of atmospheric water vapor with a network of GPS receivers. J Geophys Res 103:1807–1820

    Article  Google Scholar 

  • Feng K, Zhang J, Zhang Y, Yang Z, Chao W (1978) The numerical calculation method. National Defense Industry Press, Beijing, 311 pp

    Google Scholar 

  • Haase J, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J Appl Meteorol 42(11):1547–1568

    Article  Google Scholar 

  • Hagemann S, Bengtsson L, Gendt G (2003) On the determination of atmospheric water vapor from GPS measurements. J Geophys Res 108(D21):4678. doi:10.1029/2002JD003235

    Article  Google Scholar 

  • Herring TA (1992) Modeling atmospheric delays in the analysis of space geodetic data. In: De Munck JC, Spoelstra TATh (eds) Refraction of transatmospheric signals in Geodesy. Netherland Geodetic Commission Publications in Geodesy, 36, pp 157–164

    Google Scholar 

  • Humphreys TE, Kelley MC, Huber N, Kintner PM Jr (2005) The semidiurnal variation in GPS-derived zenith neutral delay. Geophys Res Lett 32:L24801. doi:10.1029/2005GL024207

    Article  Google Scholar 

  • Jin SG, Park PH (2005) A new precision improvement of zenith tropospheric delay estimates by GPS. Curr Sci 89(6):997–1000

    Google Scholar 

  • Jin SG, Li Z, Cho J (2008) Integrated water vapor field and multi-scale variations over China from GPS measurements. J Appl Meteorol Clim 47:3008–3015. doi:10.1175/2008JAMC1920.1

    Article  Google Scholar 

  • Jin SG, Luo OF, Ren C (2010) Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Adv Space Res 46(2):190–195. doi:10.1016/j.asr.2010.01.017

    Article  Google Scholar 

  • King RW, Bock Y (1999) Documentation for the GAMIT GPS analysis software. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Manuel H, Juan J, Sanz J et al (2001) A new strategy for real-time integrated water vapor determination in WADGOPS networks. Geophys Res Lett 28(17):3267–3270

    Article  Google Scholar 

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7(2):223–231

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18:830–850

    Article  Google Scholar 

  • Pramualsakdikul S, Haas R, Elgered G, Scherneck HG (2007) Sensing of diurnal and semi-diurnal variability in the water vapor content in the tropics using GPS measurements. Meteorol Appl 14:403–412. doi:10.1002/met.39

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites for geodesy, Geophysical monograph series 15. American Geophysical Union, Washington, pp 247–251

    Google Scholar 

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11):613–623. doi:10.1007/s00190-005-0010-z

    Google Scholar 

  • Tregoning P, Boers R, O’Brien D (1998) Accuracy of absolute precipitable water vapor estimates from GPS observations. J Geophys Res 103(28):701–710

    Google Scholar 

  • Wang J, Zhang LY, Dai A, Van Hove T, Van Baelen J (2007) A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J Geophys Res 112:D11107. doi:10.1029/2006JD007529

    Article  Google Scholar 

  • Watson C, Tregoning P, Coleman R (2006) Impact of solid Earth tide models on GPS coordinate and tropospheric time series. Geophys Res Lett 33:L08306. doi:10.1029/2005GL025538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). Ground GNSS Atmospheric Sensing. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_3

Download citation

Publish with us

Policies and ethics