Skip to main content

Determination of the Environmental Implications of Bio-energy Production Using a Life-Cycle Assessment Approach

  • Chapter
  • First Online:
Bioenergy from Wood

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 26))

  • 1424 Accesses

Abstract

A variety of reasons have led to the promotion of indigenous renewable energy sources and to an entirely new energy paradigm from fossil to renewable energy resources. These include, amongst others, the need for security and diversification of energy supplies as well as for less reliance on fossil fuels, the uncertainty surrounding oil prices, and increasing concerns over environmental degradation and climate effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aslam T, Choudhary MA, Saggar S (2000) Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agr Ecosyst Environ 77:257–262

    Article  Google Scholar 

  • Astrup Jensen A, Hoffman L, Møller B, Schmidt A, Christiansen K, Berendsen S, Elkington J, Dijk FV (1997) Life cycle assessment (LCA) – a guide to approaches, experiences, and information sources, Environmental issues series no 6. European Environment Agency, Copenhagen

    Google Scholar 

  • Baumann H, Tillman A-M (2004) The Hitch Hiker’s guide to LCA – an orientation in life cycle analysis assessment methodology and application. Studentlitteratur, Lund

    Google Scholar 

  • Berg S (1997) Some aspects of LCA in the analysis of forestry operations. J Clean Prod 5:211–217

    Article  Google Scholar 

  • Berg S, Lindholm E-L (2005) Energy use and environmental impacts of forest operations in Sweden. J Clean Prod 13:33–42

    Article  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  • Bird MI, Veenedaal EM, Moyo C, Llyod J, Frost P (2000) Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matapos, Zimbabwe). Geoderma 94:71–90

    Article  CAS  Google Scholar 

  • Bird ND, Cherubini F, Pena N, Zanchi G (2010) Greenhouse gas emissions and bioenergy. In: Amezaga JM, Von Maltitz G, Boyes S (eds) Assessing the sustainability of bioenergy projects in developing countries – a framework for policy evaluation. Newcastle University, Newcastle upon Tyne

    Google Scholar 

  • Birkved M, Hauschild MZ (2006) PestLCI – a model for estimating field emissions of pesticides in agricultural LCA. Ecol Model 198:433–451

    Article  Google Scholar 

  • Börjesson P (1999a) Environmental effects of energy crop cultivation on Sweden – part I: identification and quantification. Biomass Bioenergy 16:137–154

    Article  Google Scholar 

  • Börjesson P (1999b) Environmental effects of energy crop cultivation on Sweden – part II: economic valuation. Biomass Bioenergy 16:155–170

    Article  Google Scholar 

  • Brandão M, Milà I, Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35:2323–2326

    Article  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  PubMed  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Article  Google Scholar 

  • Consoli F, Allen D, Boustead I, Fava J, Franklin W, Jensen AA, De Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Siéguin J, Vigon B (1993) Guidelines for life cycle assessment. A code of practice. SETAC (Society of Environmental Toxicology and Chemistry) Press, Pensacola

    Google Scholar 

  • Curran MA, Mann M, Norris G (2005) The international workshop on electricity data for life cycle inventories. J Clean Prod 13:853–862

    Article  Google Scholar 

  • Dalal RC, Mayer RJ (1987) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. VI. Loss of total N from different particle size and density fractions. Aust J Soil Res 25:83–93

    Article  CAS  Google Scholar 

  • Dalal RC, Chan KY (2001) Soil organic matter in rainfed cropping systems of the Australian cereal belt. Aust J Soil Res 39:435–464

    Article  CAS  Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, Delucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

    Article  PubMed  CAS  Google Scholar 

  • Dominy CS, Haynes RJ (2002) Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two oxisols. Biol Fertil Soils 36:298–305

    Article  CAS  Google Scholar 

  • Fiala M, Bacenetti J (2012) Economic, energetic and environmental impact in short rotation coppice harvesting operations. Biomass Bioenergy 42:107–113

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  PubMed  Google Scholar 

  • Forsberg G (2000) Biomass energy transport – analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenergy 19:17–30

    Article  CAS  Google Scholar 

  • Francis GS, Tabley FJ, White KM (2001) Soil degradation under cropping and its influence on wheat yield on a weakly structured New Zealand silt loam. Aust J Soil Res 39:291–305

    Article  Google Scholar 

  • González-García S, Berg S, Feijoo G, Moreira MT (2009) Comparative environmental assessment of wood transport models: a case study of a Swedish pulp mill. Sci Total Environ 407:3530–3539

    Article  PubMed  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Gruenewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328

    Article  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo De Haes HA, De Brujin H, Van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Van Der Ven BL, Weidema B (2002) Handbook on life cycle assessment – operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hauschild MZ, Wenzel H (1998) Environmental assessment of products, vol 2, Scientific background. Chapman and Hall/Kluwer Academic Publishers, London/Hingham

    Google Scholar 

  • Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 25:147–165

    Article  CAS  Google Scholar 

  • Hontoria C, Rodriguez-Murillo JC, Saa A (1999) Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Sci Soc Am J 63:614–621

    Article  CAS  Google Scholar 

  • PE International (2011) LBP: GaBi 4.4 software-system and databases for life-cycle engineering. University of Stuttgart, Stuttgart/Leinfelden-Echterdingen

    Google Scholar 

  • ISO 14040 (1997) Environmental management – life-cycle assessment – principles and framework. International Organisation for Standardisation (ISO), Geneva

    Google Scholar 

  • ISO 14041 (1998) Environmental management – life cycle assessment – goal and scope definition and inventory analysis. International Organisation for Standardisation (ISO), Geneva

    Google Scholar 

  • ISO 14042 (2000) Environmental management – life cycle assessment – life cycle impact assessment. International Organisation for Standardisation (ISO), Geneva

    Google Scholar 

  • ISO 14043 (2000) Environmental management – life cycle assessment – life cycle interpretation. International Organisation for Standardisation (ISO), Geneva

    Google Scholar 

  • Jungmeier G, Mcdarby F, Evald A, Hohenthal C, Petersen A-K, Schwaiger H-P, Zimmer B (2003) Energy aspects in LCA of forest products. Int J Life Cycle Anal 8:99–105

    Article  CAS  Google Scholar 

  • Karjalainen T, Zimmer B, Berg S, Welling J, Schwaiger H, Finér L, Cortijo P (2001) Energy, carbon and other material flows in the life cycle assessment of forestry and forestry products: achievements of working group 1 of the COST Action E9. In: Päivinen R (ed) Discussion paper. European Forest Institute, Joensuu

    Google Scholar 

  • Klvac R, Ward S, Owende PMO, Lyons J (2003) Energy audit of wood harvesting systems. Scand J Forest Res 18:176–183

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    Article  PubMed  CAS  Google Scholar 

  • Lawes MJ, Griffiths ME, Boudreau S (2007) Colonial logging and recent subsistence harvesting affect the composition and physiognomy of a podocarp dominated Afrotemperate forest. For Ecol Manage 247:48–60

    Article  Google Scholar 

  • Little KM, Kritzinger J, Maxfield M (1997) Some principles of vegetation management explained. ICFR Bulletin, 9/97

    Google Scholar 

  • Mills AJ, O’ Connor TG, Donaldson JS, Fey MV, Skowno AL, Sigwela AM, Lechmere-Oertel RG, Bosenberg JD (2005) Ecosystem carbon storage under different land uses in three semi-arid shrublands and a mesic grassland in South Africa. South Afr J Plant Soil 22:183–190

    Article  Google Scholar 

  • Nebel B, Zimmer B, Wegener G (2006) Life cycle assessment of Wood Floor Coverings – a representative study for the German flooring industry. Int J Life Cycle Anal 11:172–182

    Article  CAS  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilisation and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Paustian K, Ravindranath N, Van Amstel A, Gytarsky M, Kurz WA, Ogle S, Richards G, Somogyi Z (2006) Introduction to volume 4: agriculture, forestry and other land use. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories. IGES, Hayama

    Google Scholar 

  • Percifal HJ, Parfitt RL, Scott NA (2000) Factors controlling soil carbon levels in New Zealand grasslands: is clay content important? Soil Sci Soc Am J 64:1623–1630

    Article  Google Scholar 

  • Potting J, Hauschild MZ (1997) Predicted environmental impact and expected occurrence of actual environmental impact, part II: spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. Int J Life Cycle Assess 2:209–216

    Article  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2008) Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans. J Clean Prod 16:1943–1948

    Article  CAS  Google Scholar 

  • Roedl A (2010) Production and energetic utilization of wood from short rotation coppice – a life cycle assessment. Int J Life Cycle Ass 15:567–578

    Article  CAS  Google Scholar 

  • Schlamadinger B, Apps M, Bohlin F, Gustavsson L, Jungmeier G, Marland G, Pingoud K, Savolainen I (1997) Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 13:359–375

    Article  CAS  Google Scholar 

  • Tiessen H, Salcedo HI, Sampaio EVSB (1992) Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid north eastern Brazil. Agric Ecosyst Environ 38:139–151

    Article  CAS  Google Scholar 

  • Tillman A-M, Ekvall T, Baumann H, Rydberg T (1994) Choice of system boundaries in life cycle assessment. J Clean Prod 2:21–29

    Article  Google Scholar 

  • Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E, Peterson D, Knops J (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685

    Article  Google Scholar 

  • Udo De Haes HA, Finnveden G, Goedkoop M, Hauschild MZ, Hertwich EG, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (2002) Life cycle impact assessment (LCIA): striving towards best practice. SETAC (Society of Environmental Toxicology and Chemistry) Press, Pensacola

    Google Scholar 

  • Van Niekerk A, Von Doderer CCC (2009) Map: biomass production potential of the Cape Winelands District Municipality (personal communication). Stellenbosch

    Google Scholar 

  • Von Doderer CCC (2009) Viability of producing lignocellulosic biomass in the Cape Winelands District Municipality for bioenergy generation. Department of Agricultural Economics, University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Von Doderer CCC (2012) Determining sustainable lignocellulosic bioenergy systems in the Cape Winelands District Municipality, South Africa. Department of Agricultural Economics, University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Von Doderer CCC, Kleynhans TE (2010) Financial viability of agroforestry for bioelectricity generation on various farm types in the Western Cape, South Africa. Agrekon Agric Econ Res Policy Pract South Afr 49:168–194

    Google Scholar 

  • Wenzel H, Hauschild MZ, Alting L (1997) Environmental assessment of products, vol 1, Methodology, tools, techniques and case studies. Kluwer Academic Publishers, Hingham

    Book  Google Scholar 

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralisation of soil organic matter in the tropics. Geoderma 79:117–161

    Article  CAS  Google Scholar 

  • Zimmer B, Wegener G (1996) Stoff- und Energiefluesse vom Forst zum Saegewerk. Holz als Roh- und Werkstoff 54:217–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens C. C. von Doderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Doderer, C.C.C., Kleynhans, T.E. (2014). Determination of the Environmental Implications of Bio-energy Production Using a Life-Cycle Assessment Approach. In: Seifert, T. (eds) Bioenergy from Wood. Managing Forest Ecosystems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7448-3_11

Download citation

Publish with us

Policies and ethics