Skip to main content

Adsorption of Selected Ions on Ferro-Precipitates from Aqueous Solutions

  • Conference paper
  • First Online:
Chemistry: The Key to our Sustainable Future
  • 1619 Accesses

Abstract

The main aim of the paper is to evaluate ferro-precipitate as an immobilization agent for various ions from aqueous solutions. Heavy metals, namely lead, copper and chromium were adsorbed as well as arsenate and phosphate. In addition, the adsorption of surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) was carried out. Linear as well as non-linear regression of adsorption isotherms confirmed the Langmuir model applicability. Adsorption capacities (am) were calculated. The highest adsorption capacity was found for arsenate and phosphate respectively (am = 1.36 mmol g−1 for arsenate and 0.70 mmol g−1 for phosphate). Lower but still enough adsorption capacity was found for heavy metals (am = 0.76 mmol g−1 for lead, 0.58 mmol g−1 for copper, 0.38 mmol g−1 for chromium, and the lowest values were shown for surfactants (a = 0.38 mmol g−1 for CTAB and 0.21 mmol g−1 for SDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taraba B, Marsalek R (2007) Immobilization of heavy metals and phenol on altered bituminous coals. Energ Source A 29:885–894

    Article  CAS  Google Scholar 

  2. Wang YH, Lin SH, Juang RS (2003) Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater B 102:291–302

    Article  CAS  Google Scholar 

  3. Klucakova M, Omelka L (2004) Sorption of metal ions on lignite and humic acid. Chem Pap Chem Zvesti 58:170–175

    CAS  Google Scholar 

  4. Cox M, El-Shafey E, Pichugin AA, Appleton Q (2000) Removal of mercury(II) from aqueous solution on a carbonaceous sorbent prepared from flax shive. J Chem Technol Biot 75:427–435

    Article  CAS  Google Scholar 

  5. Meena AK, Mishra GK, Kumar S, Rajagopal C, Nagal NP (2004) Low-cost adsorbents for the removal of mercury(II) from aqueous solution – a comparative study. Defence Sci J 54:537–548

    CAS  Google Scholar 

  6. Chen YH, Li FA (2010) Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J Colloid Interf Sci 347:277–281

    Article  CAS  Google Scholar 

  7. Mustafa S, Khan S, Zaman MI (2010) Effect of Ni2+ ion doping on the physical characteristics and chromate adsorption behavior of goethite. Water Res 44:918–926

    Article  CAS  Google Scholar 

  8. Campos V (2009) The sorption of toxic elements onto natural zeolite, synthetic goethite and modified powdered block carbon. Environ Earth Sci 59:737–744

    Article  CAS  Google Scholar 

  9. Li W, Zhang SZ, Shan XQ (2006) Effect of phosphate on the adsorption of Cu and Cd on natural hematite. Chemosphere 63:1235–1241

    Article  CAS  Google Scholar 

  10. Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage 91:2238–2247

    Article  CAS  Google Scholar 

  11. Kolbe F, Weiss H, Morgenstern P, Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus B (2011) Sorption of aqueous antimony and arsenic species onto akaganeite. J Colloid Interf Sci 357:460–465

    Article  CAS  Google Scholar 

  12. Deliyanni EA, Peleka EN, Lazaridis NK (2007) Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganeite and hybrid surfactant-akaganeite. Sep Purif Technol 52:478–486

    Article  CAS  Google Scholar 

  13. Peleka EN, Deliyanni EA (2009) Adsorptive removal of phosphates from aqueous solutions. Desalination 245:357–371

    Article  CAS  Google Scholar 

  14. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) Phosphate adsorption on synthetic goethite and akaganeite. J Colloid Interf Sci 298:602–608

    Article  CAS  Google Scholar 

  15. Wu HS, Pendleton PJ (2001) Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity. J Colloid Interf Sci 243:306–315

    Article  CAS  Google Scholar 

  16. Ridaoui H, Jada A, Vidal L, Donnet JB (2006) Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloid Surf A 278:149–159

    Article  CAS  Google Scholar 

  17. Chang MY, Juang RS (2005) Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers. Colloid Surf A 269:35–46

    Article  CAS  Google Scholar 

  18. Vale HM, McKenna TF (2005) Adsorption of sodium dodecyl sulphate and sodium dodecyl benzene sulphonate on poly(vinyl chloride) latexes. Colloid Surf A 268:68–72

    Article  CAS  Google Scholar 

  19. Valentim IB, Joekes I (2006) Adsorption of sodium dodecyl sulphate on chrysotile. Colloid Surf A 290:106–111

    Article  CAS  Google Scholar 

  20. Qi L, Liao W, Bi Z (2007) Adsorption of conventional and gemini cationic surfactants in nonswelling and swelling layer silicite. Colloid Surf A 302:568–572

    Article  CAS  Google Scholar 

  21. Sineva AV, Parfenova AM, Fedorova AA (2007) Adsorption of micelle forming and non-micelle forming surfactants on the adsorbents of different nature. Colloid Surf A 306:68–74

    Article  CAS  Google Scholar 

  22. Kosmulski M, Prochniak P, Rosenholm JB (2009) Electrokinetic studies of adsorption of ionic surfactants on titania from organic solvents. Colloid Surf A 348:298–300

    Article  CAS  Google Scholar 

  23. Atia AA, Farag FM, El-Fatah A, Youssef M (2006) Studies on the adsorption of dodecyl benzene sulphonate and cetylpyridinium bromine at liquid/air and bentonite/liquid interfaces. Colloid Surf A 278:74–80

    Article  CAS  Google Scholar 

  24. Gao XD, Chorover J (2010) Adsorption of sodium dodecyl sulphate (SDS) at ZnSe and α-Fe2O3 surfaces: Combining infrared spectroscopy and bath uptake studies. J Colloid Interf Sci 348:167–176

    Article  CAS  Google Scholar 

  25. Davey PT, Scott TR (1976) Removal of iron from leach liquors by the goethite process. Hydrometallurgy 2:25–33

    Article  CAS  Google Scholar 

  26. Ismael MRC, Carvalho JMR (2003) Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Miner Eng 16:31–39

    Article  CAS  Google Scholar 

  27. Davey PT, Scott TR (1975) Formation of β-FeOOH and α-Fe2O3 in the goethite process. T I Min Metall C 84:83–86

    Google Scholar 

  28. Jolsterå R, Gunneriusson L, Forsling W (2010) Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions. J Colloid Interf Sci 342:493–498

    Article  Google Scholar 

  29. Rica RA, Jiménez ML, Delgado AV (2010) Electric permittivity of concentrated suspensions of elongated goethite particles. J Colloid Interf Sci 343:564–573

    Article  CAS  Google Scholar 

  30. Kumpulainen S, von der Kammer F, Hofmann T (2008) Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Res 42:2051–2060

    Article  CAS  Google Scholar 

  31. Zhang JS, Stanforth R, Pehkonen SO (2007) Proton–arsenic adsorption ratios and zeta potential measurements: implications for protonation of hydroxyls on the goethite surface. J Colloid Interf Sci 315:13–20

    Article  CAS  Google Scholar 

  32. Zhang JS, Stanforth R, Pehkonen SO (2007) Effect of replacing a hydroxyl group with a methyl group on arsenic(V) species adsorption on goethite (α-FeOOH). J Colloid Interf Sci 306:16–21

    Article  CAS  Google Scholar 

  33. Madigan C, Leong YK, Ong BC (2009) Surface and rheological properties of as-received colloidal goethite (α-FeOOH) suspensions: pH and polyethylenimine effects. Int J Miner Process 93:41–47

    Article  CAS  Google Scholar 

  34. Gallardo-Moreno AM, Gonzáles-Garcia CM, González-Martín M, Bruque JM (2004) Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations. Colloid Surf A 249:57–62

    Article  CAS  Google Scholar 

  35. Basar CA, Karagunduz A, Keskinler B, Cakici A (2003) Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon (PAC). Appl Surf Sci 214:169–174

    Google Scholar 

  36. Juang RS, Wu WL (2002) Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. J Colloid Interf Sci 249:22–29

    Article  CAS  Google Scholar 

  37. Marsalek R, Navratilova Z (2011) Comparative study of CTAB adsorption on bituminous coal and clay mineral. Chem Pap Chem Zvesti 65:77–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article has been done in connection with the Institute of Environmental Technologies project, reg. no. CZ.1.05/2.1.00/03.0100 supported by the Research and Development for Innovations Operational Programme financed by European Union Structural Funds and from the means of the state budget of the Czech Republic. It was also supported by the Ministry of Industry and Trade of the Czech Republic (FR-T11/246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Marsalek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Marsalek, R. (2014). Adsorption of Selected Ions on Ferro-Precipitates from Aqueous Solutions. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) Chemistry: The Key to our Sustainable Future. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7389-9_13

Download citation

Publish with us

Policies and ethics