Skip to main content

Second-Level fMRI Data Analysis Using Mixed Model

  • Chapter
  • First Online:
Functional Magnetic Resonance Imaging Processing
  • 2820 Accesses

Abstract

This chapter deals with the random effects in fMRI data analysis. To begin with, we give the background in using the mixed-effect model for second-level fMRI data processing. Because applying general linear mixed model (GLMM) method directly to second-level fMRI data analysis can lead to computational difficulties, we employ a method which projects the first-level variance for the second-level analysis, i.e., we adopt a two-stage mixed model to combine or compare different subjects. To estimate the variance for the mixed model analysis, we developed an expectation trust region algorithm. We provide detailed information about Newton–Raphson (NR) and (expectation) trust region algorithms for different run/subject combination and comparison. After the parameters have been estimated, the T statistic for significance inference was employed. Simulation studies using synthetic data were carried out to evaluate the accuracy of the methods for group combination and comparison. In addition, real fMRI dataset from retinotopic mapping experiment was employed to test the feasibility of the methods for second-level analysis. To improve the NR algorithm, we present Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for the mixed model parameters estimation. We found that the method can improve the estimation for NR algorithm, but no significant improvement for trust region algorithms. Finally, we proposed an approach for degree of freedom (DF) estimation in the mixed-effect model. The idea is based on robust statistics. Using maximum-likelihood estimation method, we calculate the score function and Hessian matrices for the iteration expectation trust region algorithm for maximizing likelihood function. We then give NR and (expectation) trust region iteration algorithms for the DF estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Searle S, Casella G, McCulloch C (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  2. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph, Canadian Cataloguing in Publication Data

    Google Scholar 

  3. Lynch M, Bruce W (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  4. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    Google Scholar 

  5. Meng X-L, Rubin D (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2):267–278

    Article  Google Scholar 

  6. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    Google Scholar 

  7. Lindstrom M, Bates DM (1988) Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J Am Stat Assoc 83(404):1014–1022

    Google Scholar 

  8. Laird N, Lange N, Stram D (1987) Maximum likelihood computations with repeated measures: application of the EM algorithm. J Am Stat Assoc 82(397):97–105

    Article  Google Scholar 

  9. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22

    Article  Google Scholar 

  10. Hartley HO, Rao JNK (1967) Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54(1 and 2):93–108

    PubMed  CAS  Google Scholar 

  11. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3):545–554

    Article  Google Scholar 

  12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  13. Harville JA (1977) Maximum likelihood approaches to variances component estimation and to related problems. J Am Stat Assoc 72(358):320–340

    Article  Google Scholar 

  14. Mumford JA, Nichols TE (2008) Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage 39(1):261–268

    Article  PubMed  Google Scholar 

  15. Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM (2004) Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21:1732–1747

    Article  PubMed  Google Scholar 

  16. Worsley K, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. NeuroImage 15:1–15

    Article  PubMed  CAS  Google Scholar 

  17. Friston KJ, Stephan KE, Lund TE, Morcom A, Kiebel S (2005) Mixed-effects and fMRI studies. NeuroImage 24:244–252

    Article  PubMed  CAS  Google Scholar 

  18. Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. NeuroImage 20:1052–1063

    Article  PubMed  Google Scholar 

  19. Roche A, Mebastien M, Keller M, Thirion B (2007) Mixed-effect statistics for group analysis in fMRI: a nonparametric maximum likelihood approach. NeuroImage 38:501–510

    Article  PubMed  Google Scholar 

  20. Thirion B et al (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 35(1):105–120

    Article  PubMed  Google Scholar 

  21. Woolrich M (2008) Robust group analysis using outlier inference. NeuroImage 41(2):286–301

    Article  PubMed  Google Scholar 

  22. Liu C, Rubin DB, Wu YN (1998) Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85(4):755–770

    Article  Google Scholar 

  23. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    Article  Google Scholar 

  24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  25. Kelley CT (ed) (1999) Iterative methods for optimization. SIAM, Philadelphia

    Google Scholar 

  26. Nocedal J, Wright S (2006) Numerical optimization, Springer series in operations research and financial engineering. Springer, New York

    Google Scholar 

  27. Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn, Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  28. Smyth GK, Huele AF, Verbyla AP (2001) Exact and approximate REML for heteroscedastic regression. Stat Model 1:161–175

    Article  Google Scholar 

  29. Smyth GK (2002) An efficient algorithm for REML in heteroscedastic regression. J Graphical Comput Stat 11:836–847

    Article  Google Scholar 

  30. Li X, Dumoulin SO, Mansouri B, Hess RF (2007) Cortical deficits in human amblyopia: their regional distribution and their relationship to the contrast detection deficit. Invest Ophthalmol Vis Sci 48:1575–1591

    Article  PubMed  Google Scholar 

  31. Li X, Coyle D, Maguire L, McGinnity TM, Watson DR, Benali H (2010) A least angle regression method for fMRI activation detection for phase-encoded experimental designs. NeuroImage 52(2):1390–1400

    Article  PubMed  Google Scholar 

  32. Mishchenko K et al (2010) Assessing a multiple QTL search using the variance component model. Comput Biol Chem 34(1):34–41

    Article  PubMed  CAS  Google Scholar 

  33. Diggle PJ, Heagerty P, Liang KY, Zeger S (2003) Analysis of longitudinal data. In: Atkinson AC (ed) 2nd edn. Oxford statistical science series. Clarendon Press, Oxford

    Google Scholar 

  34. Li X, Coyle D, Maguire L, Watson DR, McGinnity TM (2010) Grey matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology 53(10):733–748

    Article  PubMed  Google Scholar 

  35. Li X et al (2011) A model selection method for nonlinear system identification based fMRI effective connectivity analysis. IEEE Trans Med Imaging 30(7):1365–1380

    Article  PubMed  Google Scholar 

  36. Li X, Marrelec G, Hess RF, Benali H (2010) A nonlinear identification method to study effective connectivity in functional MRI. Med Image Anal 14(1):30–38

    Article  PubMed  Google Scholar 

  37. Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modeling using the t distribution. J Am Stat Assoc 84(408):881–896

    Google Scholar 

  38. Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10(4):339–348

    Article  Google Scholar 

  39. Huber P (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101

    Article  Google Scholar 

  40. Taylor J, Verbyla A (2004) Joint modelling of location and scale parameters of the t distribution. Stat Model 4(2):91–112

    Article  Google Scholar 

  41. Pinheiro J, Liu C, Wu Y (2001) Efficient algorithms for Robust estimation in linear mixed-effects models using the multivariate t distribution. J Comput Graphical Stat 10(2):249–276

    Article  Google Scholar 

  42. Lin T-I, Wang Y-J (2009) A robust approach to joint modeling of mean and scale covariance for longitudinal data. J Stat Plann Inference 139(9):3013–3026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, X. (2014). Second-Level fMRI Data Analysis Using Mixed Model. In: Functional Magnetic Resonance Imaging Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7302-8_3

Download citation

Publish with us

Policies and ethics