Skip to main content

Molecular Diagnostics of Pancreatic Cancer

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

Abstract

Pancreatic cancer is a malignant disease relating to uncontrollable cell growth in the tissues of the pancreas. The vast majority of pancreatic cancers are ductal adenocarcinomas, originating in the epithelial layer of the exocrine pancreas, however some pancreatic cancers do originate in the endocrine compartment. Ductal adenocarcinomas are very aggressive cancers, associating with poor prognosis and late staging upon discovery. One reason for this is that many patients do not present symptoms until late onset of disease. Numerous research efforts have been put forth to earlier diagnose pancreatic cancer. Understanding of pancreatic cancer etiology and identification of associated tumor markers has progressed, however there is a clear need for more specific and sensitive technologies. This chapter aims to address current status of molecular diagnostics in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA-19-19:

Carbohydrate antigen 19 9

CA-242:

Carbohydrate antigen 242

CEA:

Carcinoembryonic antigen

CK7/17/20:

Cytokeratin 7/17/20

CTCs:

Circulating tumor cells

GWAS:

Genome wide association study

IPMNs:

Intraductal papillary mucinous neoplasms

MCNs:

Mucinous cystic neoplasms

MIC-1:

Macrophage inhibitory cytokine 1

miRNA:

MicroRNA

MSLN:

Mesothelin

mtDNA:

mitochondrial DNA

MUC4:

Mucin 4

OPN:

Osteopontin

PanINs:

Pancreatic intraepithelial neoplasias

PDAC:

Pancreatic ductal adenocarcinoma

SELDI:

Surface enhanced laser desorption and ionization

SNP:

Single nucleotide polymorphism

TPS:

Tissue polypeptide specific antigen

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    PubMed  Google Scholar 

  2. American Cancer Society (2012) Pancreatic cancer, pancreatic cancer survival by stage. American Cancer Society, Atlanta

    Google Scholar 

  3. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    PubMed  CAS  Google Scholar 

  4. Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172

    PubMed  CAS  Google Scholar 

  5. Wilentz RE, Albores-Saavedra J, Hruban RH (2000) Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol 17(1):31–42

    PubMed  CAS  Google Scholar 

  6. Hruban RH, Klimstra DS, Pitman MB (2006) Tumors of the pancreas. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  7. Goh BK et al (2006) A review of mucinous cystic neoplasms of the pancreas defined by ovarian-type stroma: clinicopathological features of 344 patients. World J Surg 30(12):2236–2245

    PubMed  Google Scholar 

  8. Hruban RH et al (2007) Precursors to pancreatic cancer. Gastroenterol Clin North Am 36(4):831–849, vi

    PubMed  Google Scholar 

  9. Brat DJ et al (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22(2):163–169

    PubMed  CAS  Google Scholar 

  10. Kosmahl M et al (2004) Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Archiv Int J Pathol 445(2):168–178

    CAS  Google Scholar 

  11. Kloppel G, Kosmahl M, Luttges J (2005) Intraductal neoplasms of the pancreas: cystic and common. Pathologe 26(1):31–36

    PubMed  CAS  Google Scholar 

  12. Canto MI et al (2004) Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 2(7):606–621

    Google Scholar 

  13. Sohn TA et al (2004) Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg 239(6):788–797, discussion 797–9

    PubMed  Google Scholar 

  14. D’Angelica M et al (2004) Intraductal papillary mucinous neoplasms of the pancreas: an analysis of clinicopathologic features and outcome. Ann Surg 239(3):400–408

    PubMed  Google Scholar 

  15. Kimura W, Makuuchi M, Kuroda A (1998) Characteristics and treatment of mucin-producing tumor of the pancreas. Hepatogastroenterology 45(24):2001–2008

    PubMed  CAS  Google Scholar 

  16. Hruban RH et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    PubMed  CAS  Google Scholar 

  17. Hruban RH et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987

    PubMed  Google Scholar 

  18. Maitra A, Kern SE, Hruban RH (2006) Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20(2):211–226

    PubMed  CAS  Google Scholar 

  19. Almoguera C et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4):549–554

    PubMed  CAS  Google Scholar 

  20. Hruban RH et al (1993) K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143(2):545–554

    PubMed  CAS  Google Scholar 

  21. Hingorani SR, Tuveson DA (2003) Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev 13(1):6–13

    PubMed  CAS  Google Scholar 

  22. Calhoun ES et al (2003) BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 163(4):1255–1260

    PubMed  CAS  Google Scholar 

  23. Schutte M et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57(15):3126–3130

    PubMed  CAS  Google Scholar 

  24. Caldas C et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8(1):27–32

    PubMed  CAS  Google Scholar 

  25. Russo AA et al (1998) Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395(6699):237–243

    PubMed  CAS  Google Scholar 

  26. Liggett WH Jr, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol Off J Am Soc Clin Oncol 16(3):1197–1206

    CAS  Google Scholar 

  27. Redston MS et al (1994) p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 54(11):3025–3033

    PubMed  CAS  Google Scholar 

  28. Hermeking H et al (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1(1):3–11

    PubMed  CAS  Google Scholar 

  29. Chan TA et al (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401(6753):616–620

    PubMed  CAS  Google Scholar 

  30. Hahn SA et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350–353

    PubMed  CAS  Google Scholar 

  31. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    PubMed  CAS  Google Scholar 

  32. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3(11):807–821

    PubMed  CAS  Google Scholar 

  33. Iacobuzio-Donahue CA et al (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24(11):1544–1548

    PubMed  CAS  Google Scholar 

  34. Wilentz RE et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002–2006

    PubMed  CAS  Google Scholar 

  35. Koprowski H et al (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 5(6):957–971

    PubMed  CAS  Google Scholar 

  36. Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC Jr, ASCO (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Clin Oncol 24(33):5313–5327, Nov 20, Epub 2006 Oct 23

    CAS  Google Scholar 

  37. Diamandis P, Hoffman BR, Sturgeon CM (2208) National academy of clinical biochemistry laboratory medicine practice guidelines for the use of tumor markers. Clin Chem 54(11):1935–1939

    Google Scholar 

  38. Steinberg W (1990) The clinical utility of the CA 19–9 tumor-associated antigen. Am J Gastroenterol 85(4):350–355

    PubMed  CAS  Google Scholar 

  39. Goonetilleke KS, Siriwardena AK (2007) Systematic review of carbohydrate antigen (CA 19–9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 33(3):266–270

    CAS  Google Scholar 

  40. Duffy MJ (1998) CA 19–9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem 35(Pt 3):364–370

    PubMed  Google Scholar 

  41. Lamerz R (1999) Role of tumour markers, cytogenetics. Ann Oncol 10(Suppl 4):145–149

    PubMed  Google Scholar 

  42. Albert MB, Steinberg WM, Henry JP (1988) Elevated serum levels of tumor marker CA19-9 in acute cholangitis. Dig Dis Sci 33(10):1223–1225

    PubMed  CAS  Google Scholar 

  43. Takasaki H et al (1988) Correlative study on expression of CA 19–9 and DU-PAN-2 in tumor tissue and in serum of pancreatic cancer patients. Cancer Res 48(6):1435–1438

    PubMed  CAS  Google Scholar 

  44. Lindholm L, Johansson C, Jansson E-L, Hallberg C, Nilsson O (1985) An immunoradiometric assay (IRMA) for the CA-50 antigen. In: Holgren J (ed) Tumor marker antigen. Studentlitteratur, Lund, p 123

    Google Scholar 

  45. Nilsson O et al (1992) Sensitivity and specificity of CA242 in gastro-intestinal cancer. A comparison with CEA, CA50 and CA 19–9. Br J Cancer 65(2):215–221

    PubMed  CAS  Google Scholar 

  46. Rothlin MA, Joller H, Largiader F (1993) CA 242 is a new tumor marker for pancreatic cancer. Cancer 71(3):701–707

    PubMed  CAS  Google Scholar 

  47. Kawa S et al (1994) Comparative study of CA242 and CA19-9 for the diagnosis of pancreatic cancer. Br J Cancer 70(3):481–486

    PubMed  CAS  Google Scholar 

  48. Haglund C et al (1994) CA 242, a new tumour marker for pancreatic cancer: a comparison with CA 19–9, CA 50 and CEA. Br J Cancer 70(3):487–492

    PubMed  CAS  Google Scholar 

  49. Ventrucci M et al (1998) Serum CA 242: the search for a valid marker of pancreatic cancer. Clin Chem Lab Med CCLM/FESCC 36(3):179–184

    CAS  Google Scholar 

  50. Ozkan H, Kaya M, Cengiz A (2003) Comparison of tumor marker CA 242 with CA 19–9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology 50(53):1669–1674

    PubMed  Google Scholar 

  51. Eccleston DW et al (1998) Pancreatic tumour marker anti-mucin antibody CAM 17.1 reacts with a sialyl blood group antigen, probably I, which is expressed throughout the human gastrointestinal tract. Digestion 59(6):665–670

    PubMed  CAS  Google Scholar 

  52. Parker N et al (1992) A new enzyme-linked lectin/mucin antibody sandwich assay (CAM 17.1/WGA) assessed in combination with CA 19–9 and peanut lectin binding assay for the diagnosis of pancreatic cancer. Cancer 70(5):1062–1068

    PubMed  CAS  Google Scholar 

  53. Gansauge F et al (1996) CAM 17.1–a new diagnostic marker in pancreatic cancer. Br J Cancer 74(12):1997–2002

    PubMed  CAS  Google Scholar 

  54. Yiannakou JY et al (1997) Prospective study of CAM 17.1/WGA mucin assay for serological diagnosis of pancreatic cancer. Lancet 349(9049):389–392

    PubMed  CAS  Google Scholar 

  55. Rydlander L et al (1996) Molecular characterization of a tissue-polypeptide-specific-antigen epitope and its relationship to human cytokeratin 18. Eur J Biochem/FEBS 241(2):309–314

    CAS  Google Scholar 

  56. Bjorklund B, Bjorklund V (1983) Specificity and basis of the tissue polypeptide antigen. Cancer Detect Prev 6(1–2):41–50

    PubMed  CAS  Google Scholar 

  57. Kornek G et al (1995) Tissue polypeptide-specific antigen (TPS) in monitoring palliative treatment response of patients with gastrointestinal tumours. Br J Cancer 71(1):182–185

    PubMed  CAS  Google Scholar 

  58. Banfi G et al (1993) Behavior of tumor markers CA19.9, CA195, CAM43, CA242, and TPS in the diagnosis and follow-up of pancreatic cancer. Clin Chem 39(3):420–423

    PubMed  CAS  Google Scholar 

  59. Pasanen PA, Eskelinen M, Partanen K, Pikkarainen P, Penttilä I, Alhava E (1994) A prospective study of serum tumour markers carcinoembryonic antigen, carbohydrate antigens 50 and 242, tissue polypeptide antigen and tissue polypeptide specific antigen in the diagnosis of pancreatic cancer with special reference to multivariate diagnostic score. Br J Cancer 69(3):562–565

    PubMed  CAS  Google Scholar 

  60. Plebani M et al (1993) Clinical utility of TPS, TPA and CA 19–9 measurement in pancreatic cancer. Oncology 50(6):436–440

    PubMed  CAS  Google Scholar 

  61. Slesak B et al (2000) Tissue polypeptide specific antigen (TPS), a marker for differentiation between pancreatic carcinoma and chronic pancreatitis. A comparative study with CA 19–9. Cancer 89(1):83–88

    PubMed  CAS  Google Scholar 

  62. Zhou W et al (1998) Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 7(2):109–112

    CAS  Google Scholar 

  63. Prince CW et al (1987) Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem 262(6):2900–2907

    PubMed  CAS  Google Scholar 

  64. O’Brien ER et al (1994) Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb J Vasc Biol/Am Heart Assoc 14(10):1648–1656

    Google Scholar 

  65. Rittling SR, Chambers AF (2004) Role of osteopontin in tumour progression. Br J Cancer 90(10):1877–1881

    PubMed  CAS  Google Scholar 

  66. Wu Y, Denhardt DT, Rittling SR (2000) Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br J Cancer 83(2):156–163

    PubMed  CAS  Google Scholar 

  67. Philip S, Bulbule A, Kundu GC (2001) Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 276(48):44926–44935

    PubMed  CAS  Google Scholar 

  68. Fedarko NS et al (2001) Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 7(12):4060–4066

    CAS  Google Scholar 

  69. Kim JH et al (2002) Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 287(13):1671–1679

    PubMed  CAS  Google Scholar 

  70. Iacobuzio-Donahue CA et al (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160(4):1239–1249

    PubMed  CAS  Google Scholar 

  71. Koopmann J et al (2004) Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 13(3):487–491

    CAS  Google Scholar 

  72. Bootcov MR et al (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A 94(21):11514–11519

    PubMed  CAS  Google Scholar 

  73. Koopmann J et al (2004) Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res Off J Am Assoc Cancer Res 10(7):2386–2392

    CAS  Google Scholar 

  74. Koopmann J et al (2006) Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res Off J Am Assoc Cancer Res 12(2):442–446

    CAS  Google Scholar 

  75. Buckhaults P et al (2001) Secreted and cell surface genes expressed in benign and malignant colorectal tumors. Cancer Res 61(19):6996–7001

    PubMed  CAS  Google Scholar 

  76. Welsh JB et al (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A 100(6):3410–3415

    PubMed  CAS  Google Scholar 

  77. Welsh JB et al (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978

    PubMed  CAS  Google Scholar 

  78. Franke WW, Schmid E, Osborn M, Weber K (1979) Intermediate-sized filaments of human endothelial cells. J Cell Biol 81(3):570–580

    PubMed  CAS  Google Scholar 

  79. Miettinen M (1995) Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas. Mod Pathol Off J US Can Acad Pathol 8(4):384–388

    CAS  Google Scholar 

  80. Ramaekers F et al (1990) Use of monoclonal antibodies to keratin 7 in the differential diagnosis of adenocarcinomas. Am J Pathol 136(3):641–655

    PubMed  CAS  Google Scholar 

  81. Wang N, Zee S, Zarbo R et al (1995) Coordinate expression of cytokeratin 7 and 20 defines unique subsets of carcinomas. Appl Immunohistochem 3(2):99–107

    Google Scholar 

  82. Chu P, Wu E, Weiss LM (2000) Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol Off J US Can Acad Pathol 13(9):962–972

    CAS  Google Scholar 

  83. Goldstein NS, Bassi D (2001) Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of vater adenocarcinomas. Percentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol 115(5):695–702

    PubMed  CAS  Google Scholar 

  84. Balague C et al (1994) Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology 106(4):1054–1061

    PubMed  CAS  Google Scholar 

  85. Terada T et al (1996) Expression of MUC apomucins in normal pancreas and pancreatic tumours. J Pathol 180(2):160–165

    PubMed  CAS  Google Scholar 

  86. Andrianifahanana M et al (2001) Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res Off J Am Assoc Cancer Res 7(12):4033–4040

    CAS  Google Scholar 

  87. Swartz MJ et al (2002) MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol 117(5):791–796

    PubMed  Google Scholar 

  88. Allum WH et al (1986) Demonstration of carcinoembryonic antigen (CEA) expression in normal, chronically inflamed, and malignant pancreatic tissue by immunohistochemistry. J Clin Pathol 39(6):610–614

    PubMed  CAS  Google Scholar 

  89. Heyderman E et al (1990) Epithelial markers in pancreatic carcinoma: immunoperoxidase localisation of DD9, CEA, EMA and CAM 5.2. J Clin Pathol 43(6):448–452

    PubMed  CAS  Google Scholar 

  90. Ni XG et al (2005) The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 31(2):164–169

    CAS  Google Scholar 

  91. Chang K, Pastan I (1996) Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A 93(1):136–140

    PubMed  CAS  Google Scholar 

  92. Kojima T et al (1995) Molecular cloning and expression of megakaryocyte potentiating factor cDNA. J Biol Chem 270(37):21984–21990

    PubMed  CAS  Google Scholar 

  93. Scholler N et al (1999) Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci U S A 96(20):11531–11536

    PubMed  CAS  Google Scholar 

  94. Chang K, Pastan I, Willingham MC (1992) Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int J Cancer 50(3):373–381

    PubMed  CAS  Google Scholar 

  95. Argani P et al (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res Off J Am Assoc Cancer Res 7(12):3862–3868

    CAS  Google Scholar 

  96. Hassan R et al (2005) Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol 124(6):838–845

    PubMed  CAS  Google Scholar 

  97. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    PubMed  CAS  Google Scholar 

  98. Matsubayashi H et al (2006) DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res 66(2):1208–1217

    PubMed  CAS  Google Scholar 

  99. Sato N et al (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742

    PubMed  CAS  Google Scholar 

  100. Bos JL et al (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327(6120):293–297

    PubMed  CAS  Google Scholar 

  101. Cerny WL, Mangold KA, Scarpelli DG (1992) K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 52(16):4507–4513

    PubMed  CAS  Google Scholar 

  102. Luttges J et al (1999) The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer 85(8):1703–1710

    PubMed  CAS  Google Scholar 

  103. Berthelemy P et al (1995) Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 123(3):188–191

    PubMed  CAS  Google Scholar 

  104. Lu X et al (2002) Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J 115(11):1632–1636

    PubMed  CAS  Google Scholar 

  105. Shi C et al (2004) LigAmp for sensitive detection of single-nucleotide differences. Nat Methods 1(2):141–147

    PubMed  CAS  Google Scholar 

  106. Farh KK et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821

    PubMed  CAS  Google Scholar 

  107. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    PubMed  CAS  Google Scholar 

  108. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    PubMed  CAS  Google Scholar 

  109. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    PubMed  CAS  Google Scholar 

  110. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30(2):106–114

    PubMed  CAS  Google Scholar 

  111. Gregory RI et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    PubMed  CAS  Google Scholar 

  112. Szafranska AE et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30):4442–4452

    PubMed  CAS  Google Scholar 

  113. Bloomston M et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908

    PubMed  CAS  Google Scholar 

  114. Ley TJ et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72

    PubMed  CAS  Google Scholar 

  115. Campbell PJ et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729

    PubMed  CAS  Google Scholar 

  116. Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    PubMed  CAS  Google Scholar 

  117. Jones JB et al (2001) Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res 61(4):1299–1304

    PubMed  CAS  Google Scholar 

  118. Lee HC et al (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441(2):292–296

    PubMed  CAS  Google Scholar 

  119. Lynch SM et al (2011) Mitochondrial DNA copy number and pancreatic cancer in the alpha-tocopherol beta-carotene cancer prevention study. Cancer Prev Res 4(11):1912–1919

    CAS  Google Scholar 

  120. Amundadottir L et al (2009) Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41(9):986–990

    PubMed  CAS  Google Scholar 

  121. Aird I, Bentall HH, Roberts JA (1953) A relationship between cancer of stomach and the ABO blood groups. Br Med J 1(4814):799–801

    PubMed  CAS  Google Scholar 

  122. Marcus DM (1969) The ABO and Lewis blood-group system. Immunochemistry, genetics and relation to human disease. N Eng J Med 280(18):994–1006

    CAS  Google Scholar 

  123. Petersen GM et al (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42(3):224–228

    PubMed  CAS  Google Scholar 

  124. Stewart CJ et al (2001) Brush cytology in the assessment of pancreatico-biliary strictures: a review of 406 cases. J Clin Pathol 54(6):449–455

    PubMed  CAS  Google Scholar 

  125. Pugliese V et al (2001) Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and k-ras-2 codon 12 molecular analysis in 47 cases. Gastrointest Endosc 54(5):595–599

    PubMed  CAS  Google Scholar 

  126. Farrell RJ et al (2001) The combination of stricture dilation, endoscopic needle aspiration, and biliary brushings significantly improves diagnostic yield from malignant bile duct strictures. Gastrointest Endosc 54(5):587–594

    PubMed  CAS  Google Scholar 

  127. Glasbrenner B et al (1999) Prospective evaluation of brush cytology of biliary strictures during endoscopic retrograde cholangiopancreatography. Endoscopy 31(9):712–717

    PubMed  CAS  Google Scholar 

  128. Khalid A et al (2004) Use of microsatellite marker loss of heterozygosity in accurate diagnosis of pancreaticobiliary malignancy from brush cytology samples. Gut 53(12):1860–1865

    PubMed  CAS  Google Scholar 

  129. Khalid A et al (2006) Endoscopic ultrasound fine needle aspirate DNA analysis to differentiate malignant and benign pancreatic masses. Am J Gastroenterol 101(11):2493–2500

    PubMed  CAS  Google Scholar 

  130. Khalid A et al (2009) Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc 69(6):1095–1102

    Google Scholar 

  131. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21(6):1164–1177

    PubMed  CAS  Google Scholar 

  132. Petricoin EF et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577

    PubMed  CAS  Google Scholar 

  133. Kozak KR et al (2003) Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci U S A 100(21):12343–12348

    PubMed  CAS  Google Scholar 

  134. Petricoin EF 3rd et al (2002) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94(20):1576–1578

    PubMed  CAS  Google Scholar 

  135. Banez LL et al (2003) Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 170(2 Pt 1):442–446

    PubMed  CAS  Google Scholar 

  136. Qu Y et al (2002) Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 48(10):1835–1843

    PubMed  CAS  Google Scholar 

  137. Adam BL et al (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62(13):3609–3614

    PubMed  CAS  Google Scholar 

  138. Li J et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    PubMed  CAS  Google Scholar 

  139. Won Y et al (2003) Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 3(12):2310–2316

    PubMed  CAS  Google Scholar 

  140. Poon TC et al (2003) Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem 49(5):752–760

    PubMed  CAS  Google Scholar 

  141. Vlahou A et al (2001) Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 158(4):1491–1502

    PubMed  CAS  Google Scholar 

  142. Koopmann J et al (2004) Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res Off J Am Assoc Cancer Res 10(3):860–868

    CAS  Google Scholar 

  143. Yu Y et al (2005) Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification. Oncology 68(1):79–86

    PubMed  CAS  Google Scholar 

  144. Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Eng J Med 351(8):781–791

    CAS  Google Scholar 

  145. Kurihara T et al (2008) Detection of circulating tumor cells in patients with pancreatic cancer: a preliminary result. J Hepatobiliary Pancreat Surg 15(2):189–195

    PubMed  Google Scholar 

  146. Khoja L et al (2012) A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer 106(3):508–516

    PubMed  CAS  Google Scholar 

  147. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070

    PubMed  CAS  Google Scholar 

  148. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    PubMed  CAS  Google Scholar 

  149. Esteller M et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61(8):3225–3229

    PubMed  CAS  Google Scholar 

  150. Yegnasubramanian S et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64(6):1975–1986

    PubMed  CAS  Google Scholar 

  151. Tan AC et al (2009) Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 3(5–6):425–438

    PubMed  CAS  Google Scholar 

  152. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Coppola M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Richards, E.J., Kong, W., Malafa, M., Cheng, J.Q., Coppola, D. (2014). Molecular Diagnostics of Pancreatic Cancer. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics