Skip to main content

Molecular Pathology of Bone and Soft Tissue Neoplasms and Potential Targets for Novel Therapy

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

  • 2746 Accesses

Abstract

Bone and soft tissue tumors encompass a rare but a heterogenous group of mesenchymal neoplasms ranging from benign to malignant. Frequently, the diagnosis of many bone and soft tissue tumors prove to be difficult due to the enormous variety of histologic subtypes, with some of them (especially the tumors of spindle cell morphology) presenting with similar clinical, microscopic, immunohistochemical, and/or radiographic characteristics. With continuous and more advanced understanding of the cytogenetic and molecular genetics of bone and soft tissue tumors, it is hopeful that, eventually, classifying bone and soft tissue tumor types can be based on molecular pathology rather than by traditional histogenesis. More importantly, the forecast for the prognosis or prediction to therapy can also be benefited from molecular pathology. Chapter 13 will review the most current molecular testing of bone and soft tissue tumors and the biomarkers that have the potential for targeted therapy with focus on the recent developments from the past 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASPS:

Alveolar soft part sarcoma

DFSP:

Dermatofibrosarcoma protuberans

FISH:

Fluorescent in situ hybridization

GIST:

Gastrointestinal stromal tumor

HMO:

Hereditary multiple osteochondromas

HSP:

Heat-shock protein

IGF1R:

Insulin-like growth factor 1 receptor

NTRK3:

Neurotrophin 3 receptor gene

PDGFRA:

Platelet-derived growth factor receptor alpha

PIK3CA:

Phosphotidylinosital-3 kinase catalytic alpha polypeptide

PNET:

Primitive neuroectodermal tumor

PPARγ:

Peroxisome proliferator-activated receptor-gamma

PVNS:

Pigmented villonodular synovitis

RT-PCR:

Reverse transcription-polymerase chain reaction

SNP:

Single nucleotide polymorphism

VEGFR:

Vascular endothelial growth factor receptor

WDLPS/ALT:

Well-differentiated liposarcoma/atypical lipomatous tumor

References

  1. Fletcher C, Uni K, Mertens F (eds) (2002) Pathology and genetics of tumours of soft tissue and bone, vol 5, World Health Organization classification of tumours. IARC Press, Lyon

    Google Scholar 

  2. Igbokwe A, Lopez-Terrada D (2011) Molecular testing of solid tumors. Arch Pathol Lab Med 135:67–82

    PubMed  CAS  Google Scholar 

  3. Bridge J, Cushman-Vokoun A (2011) Molecular diagnostics of soft tissue tumors. Arch Pathol Lab Med 135:588–601

    PubMed  CAS  Google Scholar 

  4. Ordonez J, Osuna D, Garcia-Dominguez D, Amaral A, Otero-Motta A, Mackintosh C, Sevillano M, Barbado M, Hernandez T, Alva E (2010) The clinical relevance of molecular genetics in soft tissue sarcomas. Adv Anat Pathol 17:162–181

    PubMed  Google Scholar 

  5. Taylor B, Barretina J, Maki R, Antonescu C, Singer S, Ladanyi M (2011) Advances in sarcoma genomics and new therapeutic targets. Nat Rev 11:541–557

    CAS  Google Scholar 

  6. Sandberg A, Bridge J (2000) Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet 123(1):1–26

    PubMed  CAS  Google Scholar 

  7. Sorensen P, Lessnick S, Lopez-Terrada D, Liu X, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS family transcription factor, ERG. Nat Genet 6(2):146–151

    PubMed  CAS  Google Scholar 

  8. Parham D (2001) Pathologic classification of rhabdomyosarcomas and correlations with molecular studies. Mod Pathol 14(5):506–514

    PubMed  CAS  Google Scholar 

  9. Douglass E, Shapiro D, Valentine M (1993) Alveolar rhabdomyosarcoma with the t(2;13): cytogenetic findings and clinicopathologic correlations. Med Pediatr Oncol 21(2):83–87

    PubMed  CAS  Google Scholar 

  10. Wachtel M, Dettling M, Koscielniak E (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64(16):5539–5545

    PubMed  CAS  Google Scholar 

  11. Barr F, Galili N, Holick J, Biegel J, Rovera G, Emanuel B (1993) Rearrangement of PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3(2):113–117

    PubMed  CAS  Google Scholar 

  12. Sorensen P, Lynch J, Qualman S (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679

    PubMed  CAS  Google Scholar 

  13. Bridge J, Liu J, Qualman S (2002) Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer 33(3):310–321

    PubMed  CAS  Google Scholar 

  14. Ladanyi M, Gerald W (1996) Specificity of the EWS/WT1 gene fusion for desmoplastic small round cell tumor. J Pathol 180(4):462

    PubMed  CAS  Google Scholar 

  15. Antonescu C, Argani P, Erlandson R (1998) Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer 83:1504–1521

    PubMed  CAS  Google Scholar 

  16. Panagopoulos I, Mertens F, Isaksson M (2002) Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 35:340–352

    PubMed  CAS  Google Scholar 

  17. Tanas M, Goldblum J (2009) Fluorescence in-situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol 16:383–391

    PubMed  CAS  Google Scholar 

  18. Enzinger F, Weiss S (2001) Soft tissue tumors, 4th edn. Mosby, St. Louis

    Google Scholar 

  19. de Leeuw B, Balemans M, Olde Weghuis D, Geurts van Kessel A (1995) Identification of two alternative fusion genes, SYT-SXX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet 4(6):1097–1099

    PubMed  Google Scholar 

  20. Kawai A, Woodruff J, Healey J, Brennan M, Antonescu C, Ladanyi M (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338(3):153–160

    PubMed  CAS  Google Scholar 

  21. Patel K, Szabo S, Hernandez V (2008) Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluoresence in situ hybridization assays. Hum Pathol 39(2):184–193

    PubMed  CAS  Google Scholar 

  22. Naeem R, Lux M, Huang S, Naber S, Corson J, Fletcher J (1995) Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 147(6):1553–1558

    PubMed  CAS  Google Scholar 

  23. Terrier-Lacombe M, Guillou L, Maire G (2003) Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data–a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 27(1):27–39

    PubMed  Google Scholar 

  24. Rutkowski P, Van Glabbeke M, Rankin C (2010) Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol 28(10):1772–1779

    PubMed  CAS  Google Scholar 

  25. Knezevish S, McFadden D, Tao W, Lim J, Sorensen P (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187

    Google Scholar 

  26. Knezevish S, Garnett M, Pysher T, Beckwith J, Grundy P, Sorensen P (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 58(22):5046–5048

    Google Scholar 

  27. Tognon C, Knezevich S, Huntsman D (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376

    PubMed  CAS  Google Scholar 

  28. Schofield D, Fletcher J, Grier H, Yunis E (1994) Fibrosarcoma in infants and children: application of new techniques. Am J Surg Pathol 18(1):14–24

    PubMed  CAS  Google Scholar 

  29. Argani P, Fritsch M, Kadkol S, Schuster A, Beckwith J, Perlman E (2000) Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 13(1):29–36

    PubMed  CAS  Google Scholar 

  30. Storlazzi C, Mertens F, Nascimento A (2003) Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 12:2349–2358

    PubMed  CAS  Google Scholar 

  31. Mertens F, Fletcher C, Antonescu C (2005) Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 85:408–415

    PubMed  CAS  Google Scholar 

  32. Flanagan A, Delaney D, O’Donnell P (2010) The benefits of molecular pathology in the diagnosis of musculoskeletal disease: part 1 of a two part review: soft tissue tumors. Skeletal Radiol 39:105–115

    PubMed  Google Scholar 

  33. Hirota S, Isozaki K, Moriyama Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580

    PubMed  CAS  Google Scholar 

  34. Hirota S, Ohashi A, Nishida T (2003) Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125(3):660–667

    PubMed  CAS  Google Scholar 

  35. Debiec-Rychter M, Sciot R, Le C (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(8):1093–1103

    PubMed  CAS  Google Scholar 

  36. Lasota J, Miettinen M (2008) Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumors. Histopathology 53(3):245–266

    PubMed  CAS  Google Scholar 

  37. Andersson J, Bumming P, Meis-Kindblom JM (2006) Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 130(6):1573–1581

    PubMed  CAS  Google Scholar 

  38. Miettinen M, Sobin L, Lasota J (2005) Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29(1):52–68

    PubMed  Google Scholar 

  39. Antonescu C, Sommer G, Sarran L (2003) Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 9(9):3329–3337

    PubMed  CAS  Google Scholar 

  40. Lasota J, Corless C, Heinrich M (2008) Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod Pathol 21(4):476–484

    PubMed  CAS  Google Scholar 

  41. Lasota J, Dansonka-Mieszkowska A, Sobin L, Miettinen M (2004) A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 84(7):874–883

    PubMed  CAS  Google Scholar 

  42. Heinrich M, Corless C, Blanke C (2006) Molecular correlates of imatinib resistance in gastrointestinal stromals tumors. J Clin Oncol 24(29):4764–4774

    PubMed  CAS  Google Scholar 

  43. Debiec-Rychter M, Dumez H, Judson I (2004) Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 40(5):689–695

    PubMed  CAS  Google Scholar 

  44. Heinrich M, Corless C, Demetri G (2005) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(23):4342–4349

    Google Scholar 

  45. Sandberg A (2004) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet 155(1):1–24

    PubMed  CAS  Google Scholar 

  46. Powers M, Wang W-L, Hernandez V (2010) Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol 23(10):1307–1315

    PubMed  CAS  Google Scholar 

  47. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S (2010) Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42(8):715–721

    PubMed  CAS  Google Scholar 

  48. Binh M, Sastre-Garau X, Guillou L (2005) MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 29(10):1340–1347

    PubMed  Google Scholar 

  49. Bridge J, Sreekantaiah C, Neff J, Sandberg A (1991) Cytogenetic findings in clear cell sarcoma of tendons and aponeuroses: malignant melanoma of soft parts. Cancer Genet Cytogenet 52(1):101–106

    PubMed  CAS  Google Scholar 

  50. Zucman J, Delattre O, Desmaze C (1993) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 4(4):341–345

    PubMed  CAS  Google Scholar 

  51. Heimann P, Devalck C, Debusscher C, Sariban E, Vamos E (1998) Alveolar soft part sarcoma: further evidence by FISH for the involvement of chromosome band 17q25. Genes Chromosomes Cancer 23(2):194–197

    PubMed  CAS  Google Scholar 

  52. Ladanyi M, Lui M, Antonescu C (2001) The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20(1):48–57

    PubMed  CAS  Google Scholar 

  53. Mitton B, Federman N (2012) Alveolar soft part sarcomas: molecular pathogenesis and implications for novel targeted therapies. Sarcoma 2012:428789

    PubMed  Google Scholar 

  54. Biegel J, Allen C, Kawasaki K (1996) Narrowing the critical region for a rhabdoid tumor locus in 22q11. Genes Chromosomes Cancer 16(2):94–105

    PubMed  CAS  Google Scholar 

  55. Versteege I, Sevenet N, Lange J (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689):203–206

    PubMed  CAS  Google Scholar 

  56. Modena P, Lualdi E, Facchinetti F (2005) SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 65(10):4012–4019

    PubMed  CAS  Google Scholar 

  57. Kreiger P, Judkins A, Russo P (2009) Loss of INI1 expression defines a unique subset of pediatric undifferentiated soft tissue sarcomas. Mod Pathol 22(1):142–150

    PubMed  CAS  Google Scholar 

  58. Jackson E, Sievert A, Gai X (2009) Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res 15(6):1923–1930

    PubMed  CAS  Google Scholar 

  59. Bovee J, Cleton-Jansen A, Wuyts W, Caethoven G, Taminiau A, Bakker E, Van Hul W, Cornelisse C, Hogendoorn P (1999) EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Hum Genet 65(3):689–698

    PubMed  CAS  Google Scholar 

  60. Mertens F, Rydholm A, Kreicbergs A, Willen H, Jonsson K, Heim S, Mitelman F, Mandahl N (1994) Loss of chromosome band 8q24 in sporadic osteocartilaginous exostoses. Genes Chromosomes Cancer 9:8–12

    PubMed  CAS  Google Scholar 

  61. Bridge J, Nelson M, Orndal C, Bhatia P, Neff J (1988) Clonal karyotypic abnormalities of the hereditary multiple exostoses chromosomal loci 8q24.1 (EXT1) and 11p11-12 (EXT2) in patients with sporadic and hereditary osteochondromas. Cancer 82:1657–1663

    Google Scholar 

  62. Gunawan B, Weber M, Bergmann F, Wildberger J, Niethard F, Fuzesi L (2000) Clonal chromosome abnormalities in enchondromas and chondrosarcomas. Cancer Genet Cytogenet 120:127–130

    PubMed  CAS  Google Scholar 

  63. Bridge J, Persons D, Neff J, Bhatia P (1992) Clonal karyotypic aberrations in enchondromas. Cancer Detect Prev 16:215–219

    PubMed  CAS  Google Scholar 

  64. Halbert A, Harrison W, Hicks M, Davino N, Cooley L (1998) Cytogenetic analysis of a scapular chondromyxoid fibroma. Cancer Genet Cytogenet 104:52–56

    PubMed  CAS  Google Scholar 

  65. Safar A, Nelson M, Neff J, Maale G, Bayani J, Squire J, Bridge J (2000) Recurrent anomalies of 6q25 in chondromyxoid fibroma. Hum Pathol 31:306–311

    PubMed  CAS  Google Scholar 

  66. Sawyer J, Swanson C, Lukacs J, Nicholas R, North P, Thomas J (1998) Evidence of an association between 6q13-21 chromosome aberrations and locally aggressive behavior in patients with cartilage tumors. Cancer 82:474–483

    PubMed  CAS  Google Scholar 

  67. Granter S, Renshaw A, Kozakewich H, Fletcher J (1998) The pericentromeric inversion, inv (6)(p25q13), is a novel diagnostic marker in chondromyxoid fibroma. Mod Pathol 11:1273–1276

    Google Scholar 

  68. Tallini G, Dorfman H, Brys P, Dal Cin P, de Wever I, Fletcher C, Jonson K, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Samson I, Sciot R, van den Berghe H, Vanni R, Willen H (2002) Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumors. A report from the chromosomes and morphology (CHAMP) collaborative study group. J Pathol 196:194–203

    PubMed  Google Scholar 

  69. Schrage Y, Bovee J (2005) Bone tumors: an overview. Atlas Genet Cytogenet Oncol Haematol. http://documents.crevues.inist.fr/bitstream/2042/38197/1-03205

  70. Bridge J, Bhatia P, Anderson J, Neff J (1993) Biologic and clinical significance of cytogenetic and molecular cytogenetic abnormalities in benign and malignant cartilaginous lesions. Cancer Genet Cytogenet 69:79–90

    PubMed  CAS  Google Scholar 

  71. Mandahl N, Gustafson P, Mertens F, Akerman M, Baldetorp B, Gisselsson D, Knuutila S, Bauer H, Larsson O (2002) Cytogenetic aberrations and their prognostic impact in chondrosarcoma. Genes Chromosomes Cancer 33:188–200

    PubMed  Google Scholar 

  72. Bridge J, DeBoer J, Travis J, Johansson S, Elmberger G, Noel S, Neff J (1994) Simultaneous interphase cytogenetic analysis and fluorescence immunophenotyping of dedifferentiated chondrosarcoma. Implications for histopathogenesis. Am J Pathol 144:215–220

    PubMed  CAS  Google Scholar 

  73. Bovee J, Cleton-Jansen A, Rosenberg C, Taminiau A, Cornelisse C, Hogendoorn P (1999) Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis. J Pathol 189:454–462

    PubMed  CAS  Google Scholar 

  74. O’Malley D, Opheim K, Barry T, Chapman D, Emond M, Conrad E, Norwood T (2001) Chromosomal changes in a dedifferentiated chondrosarcoma: a case report and review of the literature. Cancer Genet Cytogenet 124:105–111

    PubMed  Google Scholar 

  75. Swarts S, Neff J, Johansson S, Bridge J (1996) Cytogenetic analysis of dedifferentiated chondrosarcoma. Cancer Genet Cytogenet 89:49–51

    PubMed  CAS  Google Scholar 

  76. Naumann S, Krallman P, Unni K, Fidler M, Neff J, Bridge J (2002) Translocation der(13;21)(q10;q10) in skeletal and extraskeletal mesenchymal chondrosarcoma. Mod Pathol 15:572–576

    PubMed  Google Scholar 

  77. Baruffi M, Volpon J, Neto J, Casartelli C (2001) Osteoid osteomas with chromosome alterations involving 22q. Cancer Genet Cytogenet 124:127–131

    PubMed  CAS  Google Scholar 

  78. Knuutila S, Autio K, Aalto Y (2000) Online access to CGH data of DNA sequence copy number changes. Am J Pathol 157:689

    PubMed  CAS  Google Scholar 

  79. Forus A, Florenes V, Maelandsom G, Fodstad O, Myklebost O (1994) The protooncogene CHOP/GADD153, involved in growth arrest and DNA damage response, is amplified in a subset of human sarcomas. Cancer Genet Cytogenet 78:165–171

    PubMed  CAS  Google Scholar 

  80. Khatib Z, Matsushime H, Valentine M, Shapiro D, Sherr C, Look A (1993) Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 53:5535–5541

    PubMed  CAS  Google Scholar 

  81. Momand J, Zambetti G, Olson D, George D, Levine A (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    PubMed  CAS  Google Scholar 

  82. Oliner J, Kinzler K, Meltzer P, Gerorge D, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    PubMed  CAS  Google Scholar 

  83. Roberts W, Douglass E, Peiper S, Houghton P, Look A (1989) Amplification of the gli gene in childhood sarcomas. Cancer Res 49:5407–5413

    PubMed  CAS  Google Scholar 

  84. Smith S, Weiss S, Jankowski S, Coccia M, Meltzer P (1992) SAS amplification in soft tissue sarcomas. Cancer Res 52:3746–3749

    PubMed  CAS  Google Scholar 

  85. Atiye J, Wolf M, Kaur S, Monni O, Böhling T, Kivioja A, Tas E, Serra M, Tarkkanen M, Knuutila S (2005 Feb) Gene amplifications in osteosarcoma – CGH microarray analysis. Genes Chromosomes Cancer 42(2):158–163

    PubMed  CAS  Google Scholar 

  86. Ladanyi M, Cha C, Lewis R, Jhanwar S, Huvos A, Healey J (1993) MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 53:16–18

    PubMed  CAS  Google Scholar 

  87. Berner J, Forus A, Elkahloun A, Meltzer P, Fodstad O, Myklebost O (1996) Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 17:254–259

    PubMed  CAS  Google Scholar 

  88. Forus A, Florenes V, Maelandsom G, Fodstad O, Myklebost O (1994) 12q13-14 amplica in human sarcomas without MDM2 include CDK4, SAS and GADD153/CHOP. Cancer Genet Cytogenet 77:200

    Google Scholar 

  89. Maelandsom G, Berner J, Florenes V, Forus A, Hovig E, Fodstad O, Myklebost O (1995) Homozygous deletion frequency and expression levels of the CDKN2 gene in human sarcoma – relationship to amplification and mRNA levels of CDK4 and CCND1. Br J Cancer 72:393–398

    Google Scholar 

  90. Stock C, Kager L, Fink F, Gadner H, Ambros P (2000) Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 28:329–336

    PubMed  CAS  Google Scholar 

  91. Tarkkanen M, Bohling T, Gamberi G, Ragazzini P, Benassi M, Kivioja A, Kallio P, Elomaa I, Picci P, Knuutila S (1998) Comparative genomic hybridization of low-grade central osteosarcoma. Mod Pathol 11:421–426

    PubMed  CAS  Google Scholar 

  92. Mertens F, Mandahl N, Orndal C, Baldetorp B, Bauer H, Rydholm A, Wiebe T, Willen H, Akerman M, Heim S, Mitelman F (1993) Cytogenetic findings in 33 osteosarcomas. Int J Cancer 55:44–50

    PubMed  CAS  Google Scholar 

  93. Sinovic J, Bridge J, Neff J (1992) Ring chromosome in parosteal osteosarcoma. Clinical and diagnostic significance. Cancer Genet Cytogenet 62:50–52

    PubMed  CAS  Google Scholar 

  94. Szymanska J, Mandahl N, Mertens F, Tarkkanen M, Karaharju E, Knuutila S (1996) Ring chromosomes in parosteal osteosarcoma contain sequences from 12q13-15: a combined cytogenetic and comparative genomic hybridization study. Genes Chromosomes Cancer 16:31–34

    PubMed  CAS  Google Scholar 

  95. Mertens F, Larramendy M, Gustavsson A, Gisselsson D, Rydholm A, Brosjo O, Mitelman F, Knuutila S, Mandahl N (2000) Radiation-associated sarcomas are characterized by complex karyotypes with frequent rearrangements of chromosome are 3p. Cancer Genet Cytogenet 116(89–96)

    Google Scholar 

  96. Tarkkanen M, Wiklund T, Virolainen M, Larramendy M, Mandahl N, Mertens F, Blomqvist C, Tukiainen E, Miettinen M, Elomaa I, Knuutila S (2001) Comparative genomic hybridization of postirradiation sarcomas. Cancer 92:1992–1998

    PubMed  CAS  Google Scholar 

  97. Nellissery M, Padalecki S, Brkanac Z, Singer F, Roodman G, Unni K, Leach R, Hansen M (1998) Evidence for a novel osteosarcoma tumor-suppressor gene in the chromosome 18 region genetically linked with Paget disease of bone. Am J Hum Genet 63:817–824

    PubMed  CAS  Google Scholar 

  98. Nilsson M, Domanski H, Mertens F, Mandahl N (2004) Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre parosteal osteochondromatous proliferation (Nora’s lesion). Hum Pathol 35(9):1063–1069

    PubMed  CAS  Google Scholar 

  99. Bridge J, Swarts S, Buresh C, Nelson M, Degenhardt J, Spanier S, Maale G, Meloni A, Lynch J, Neff J (1999) Trisomies 8 and 20 characterize a subgroup of benign fibrous lesions arising in both soft tissue and bone. Am J Pathol 154:729–733

    PubMed  CAS  Google Scholar 

  100. Schwartz H, Dahir G, Butler M (1993) Telomere reduction in giant cell tumor of bone and with aging. Cancer Genet Cytogenet 71:132–138

    PubMed  CAS  Google Scholar 

  101. Bridge J, Neff J, Mouron B (1992) Giant cell tumor of bone. Chromosomal analysis of 48 specimens and review of the literature. Cancer Genet Cytogenet 58:2–13

    PubMed  CAS  Google Scholar 

  102. Panagopoulos I, Mertens F, Domanski H, Isaksson M, Brosjo O, Gustafson P, Mandahl N (2001) No EWS/FLI1 fusion transcripts in giant-cell tumors of bone. Int J Cancer 93:769–772

    PubMed  CAS  Google Scholar 

  103. Sciot R, Dorfman H, Brys P, Dal Cin P, De Wever I, Fletcher C, Jonson K, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Samson I, Tallini G, Van den Berghe H, Vanni R, Willen H (2000) Cytogenetic-morphologic correlations in aneurysmal bone cyst, giant cell tumor of bone and combined lesions. A report from the CHAMP study group. Mod Pathol 13:1206–1210

    PubMed  CAS  Google Scholar 

  104. Tarkkanen M, Kaipanien A, Karaharju E, Bohling T, Szymanska J, Helio H, Kivioja A, Elomaa I, Knuutila S (1993) Cytogenetic study of 249 consecutive patients examined for a bone tumor. Cancer Genet Cytogenet 68:1–21

    PubMed  CAS  Google Scholar 

  105. Zheng M, Siu P, Papadimitriou J, Wood D, Murch A (1999) Telomeric fusion is a major cytogenetic aberration of giant cell tumors of bone. Pathology 31:373–378

    PubMed  CAS  Google Scholar 

  106. Scheil S, Bruderlein S, Liehr T, Starke H, Herms J, Schulte M, Moller P (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosomes Cancer 32:203–211

    PubMed  CAS  Google Scholar 

  107. Miozzo M, Dalpra L, Riva P, Volonta M, Macciardi F, Pericotti S, Tibiletti M, Cerati M, Rohde K, Larizza L, Fuhrman Conti A (2000) A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. Int J Cancer 87:68–72

    PubMed  CAS  Google Scholar 

  108. Hazelbag H, Van den Broek L, Fleuren G, Taminiau A, Hogendoorn P (1997) Distribution of extracellular matrix components in adamantinoma of long bones suggests fibrous-to-epithelial transformation. Hum Pathol 28:183–188

    PubMed  CAS  Google Scholar 

  109. Kanamori M, Antonescu C, Scott M, Bridge R, Neff J, Spanier S, Scarborough M, Vergara G, Rosenthal H, Bridge J (2001) Extra copies of chromosomes 7, 8, 12, 19, and 21 are recurrent in adamantinoma. J Mol Diagn 3:16–21

    PubMed  CAS  Google Scholar 

  110. Mandahl N, Heim S, Rydholm A, Willen H, Mitelman F (1989) Structural chromosome aberrations in an adamantinoma. Cancer Genet Cytogenet 42:187–190

    PubMed  CAS  Google Scholar 

  111. Sozzi G, Miozzo M, Di Palma S, Minelli A, Calderone C, Danesino C, Pastorino U, Pierotti M, Della Porta G (1990) Involvement of the region 13q14 in a patient with adamantinoma of the long bones. Hum Genet 85:513–515

    PubMed  CAS  Google Scholar 

  112. Panoutsakopoulos G, Pandis N, Kyriazoglou I, Gustafson P, Mertens F, Mandahl N (1999) Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosomes Cancer 26:265–266

    PubMed  CAS  Google Scholar 

  113. Oliveira A, Perez-Atayde A, Inwards C, Medeiros F, Derr V, Hsi B (2004) USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol 165(5):1773–1780

    PubMed  CAS  Google Scholar 

  114. Oliveira A, Hsi B, Weremowicz S, Rosenberg A, Dal Cin P, Joseph N (2004) USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 64(6):1920–1923

    PubMed  CAS  Google Scholar 

  115. Oliveira A, Perez-Atayde A, Dal Cin P, Gebhardt M, Chen C, Neff J (2005) Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 24:3419–3426

    PubMed  CAS  Google Scholar 

  116. Oliveira A, Chou M, Perez-Atayde A, Rosenberg A (2006) Aneurysmal bone cyst: a neoplasm driven by upregulation of the USP6 oncogene. J Clin Oncol 24(1):e1

    PubMed  Google Scholar 

  117. Bianco P, Rimminucci M, Majolagbe A, Kuznetsov S, Collins M, Mankani M (2000) Mutations of the GNAS1 gene, stromal cell dysfunction, and osteomalacic changes in non-McCune-Albright fibrous dysplasia of bone. J Bone Miner Res 15(1):120–128

    PubMed  CAS  Google Scholar 

  118. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF (1996) Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol 14(5):1679–1689

    PubMed  CAS  Google Scholar 

  119. Kumar V, Abbas A, Fausto N, Aster J (2010) Robbins & Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia

    Google Scholar 

  120. Agaram N, Wong G, Guo T (2008) Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47:853–859

    PubMed  CAS  Google Scholar 

  121. Agaimy A, Terracciano T, Dirnhofer S (2009) V600E BRAF mutations are alternative early molecular events in a subset of IT/PDGFRA wild-type gastrointestinal stromal tumors. J Clin Pathol 62:613–616

    PubMed  CAS  Google Scholar 

  122. Judson I (2010) Targeted therapies in soft tissue sarcomas. Ann Oncol 21(Suppl 7):277–280

    Google Scholar 

  123. Wardelmann E, Schildhaus H, Merkelbach-Bruse S (2010) Soft tissue sarcoma: from molecular diagnosis to selection of treatment. Pathological diagnosis of soft tissue sarcoma amid molecular biology and targeted therapies. Ann Oncol 21(Suppl 7):265–269

    Google Scholar 

  124. Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J, Dahia PL, Liegl B, Ball ER, Raygada M, Lai AH, Kelly L, Hornick JL, O’Sullivan M, de Krijger RR, Dinjens WN, Demetri GD, Antonescu CR, Fletcher JA, Helman L, Stratakis CA (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 108(1):314–318

    PubMed  CAS  Google Scholar 

  125. Kelly-Downs E, Rubin B (2011) Gastrointestinal stromal tumors: molecular mechanisms and targeted therapies. Pathol Res Int 2011:7

    Google Scholar 

  126. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, Bello CL, Huang X, Baum CM, Casali PG (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338

    PubMed  CAS  Google Scholar 

  127. Quek R, George S (2010) Update on the treatment of gastrointestinal stromal tumors (GISTs): role of imatinib. Biologics Targets Ther 4:19–31

    CAS  Google Scholar 

  128. Weiss S, Goldblum J (eds) (2008) Enzinger and Weiss’s soft tissue tumors. Mosby Elsevier, St. Louis

    Google Scholar 

  129. Blay J, El Sayadi H, Thiesse P (2008) Complete response to imatinib in relapsing pigmented villonodular synovitis/tenosynovial giant cell tumor (PVNS/TGCT). Ann Oncol 19:821–822

    PubMed  Google Scholar 

  130. Cassier P, Stacchiotti S, Gelderblom H (2010) Imatinib mesylate for the treatment of locally advanced and/or metastatic pigmented villonodular synovitis/tenosynovial giant cell tumor (PVNS/TGCT). In: ASCO annual meeting; 2010, Chicago. J Clin Oncol 28:15s (suppl; abstr 10012)

    Google Scholar 

  131. Ravia V, Wang W, Lewis V (2011) Treatment of tenosynovial giant cell tumor and pigmented villonodular synovitis. Curr Opin Oncol 23:361–366

    Google Scholar 

  132. Spurrell EL, Fisher C, Thomas JM, Judson IR (2005) Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol 16(3):437–444

    PubMed  CAS  Google Scholar 

  133. Canter RJ, Qin LX, Maki RG, Brennan MF, Ladanyi M, Singer S (2008) A synovial sarcoma-specific preoperative nomogram supports a survival benefit to ifosfamide-based chemotherapy and improves risk stratification for patients. Clin Cancer Res 14(24):8191–8197

    PubMed  CAS  Google Scholar 

  134. Subbiah V, Kurzrock R (2011) Phase 1 clinical trials for sarcomas: cutting edge. Curr Opin Oncol 23:352–360

    PubMed  CAS  Google Scholar 

  135. Sleijfer S, Ray-Coquard I, Papai Z (2009) Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC study 62043). J Clin Oncol 27(19):3126–3132

    PubMed  CAS  Google Scholar 

  136. Dobashi Y, Suzuki S, Sato E (2009) EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod Pathol 22(10):128–140

    Google Scholar 

  137. Mancuso T, Mezzelani A, Riva C (2000) Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest 80(6):805–813

    PubMed  CAS  Google Scholar 

  138. Joyner D, Albritton K, Bastar J (2006) G3139 antisense oligonucleotide directed against antiapoptotic bcl-2 enhances doxorubicin cytotoxicity in the FU-SY-1 synovial sarcoma line. J Orthop Res 24(3):474–480

    PubMed  CAS  Google Scholar 

  139. Weiss S (2002) Soft tissue sarcomas: lessons from the past, challenges for the future. Mod Pathol 15(1):77–86

    PubMed  Google Scholar 

  140. Mills S, Carter D, Greenson J (eds) (2009) Sternberg’s diagnostic surgical pathology, 5th edn. Lippincott Williams & Wikins, Philadelphia

    Google Scholar 

  141. Henricks W, Chu Y, Goldblum J, Weiss S (1997) Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol 21(3):271–281

    PubMed  CAS  Google Scholar 

  142. McCormick D, Mentzel T, Beham A, Fletcher C (1994) Dedifferentiated liposarcoma: clinicopathologic analysis of 32 cases suggesting a better prognostic subgroup among pleomorphic sarcomas. Am J Surg Pathol 18(12):1213–1223

    PubMed  CAS  Google Scholar 

  143. Singer S, Antonescu C, Riedel E, Brennan M, Pollock R (2003) Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann Surg 238(3):358–371

    PubMed  Google Scholar 

  144. Yang J, Du X, Chen K, Ylipaa A, Lazar AJ, Trent J, Lev D, Pollock R, Hao X, Hunt K, Zhang W (2009) Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett 275(1):1–8

    PubMed  CAS  Google Scholar 

  145. Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, Socci ND, Behrendt N, Ma L, Maki RG, Pandolfi PP, Cordon-Cardo C (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13(6):748–753

    PubMed  CAS  Google Scholar 

  146. Longtin R (2003) Ewing’s sarcoma: a miracle drug waiting to happen? J Natl Cancer Inst 95(21):1574–1576

    PubMed  Google Scholar 

  147. Pinto A, Dickman P, Parham D (2011) Pathobiologic markers of the Ewing sarcoma family of tumors: state of the art and prediction of behaviour. Sarcoma 2011:15

    Google Scholar 

  148. Pappo A, Pater S (2010) Activity of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF1R), in patients with recurrent or refractory Ewing’s sarcoma family of tumors (ESFT): results of a phase II SARC study. In: Proceedings of the ASCO annual meeting. June 4–8, Chicago, IL

    Google Scholar 

  149. Cho D, Shook D, Shimasaki N, Chang Y, Fujisaki H, Campana D (2010) Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 16(15):3901–3909

    PubMed  CAS  Google Scholar 

  150. Ahn Y, Weigel B, Verneris M (2010) Killing the killer: natural killer cells to treat Ewing’s sarcoma. Clin Cancer Res 16:3819–3821

    PubMed  CAS  Google Scholar 

  151. Karosas A (2010) Ewing’s sarcoma. Am J Health Syst Pharm 67(19):1599–1605

    PubMed  CAS  Google Scholar 

  152. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn M. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson-Jackson, E.B., Conley, A., Bui, M.M. (2014). Molecular Pathology of Bone and Soft Tissue Neoplasms and Potential Targets for Novel Therapy. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics