Skip to main content

Epigenetic Mechanisms: Histone Acetylation, DNA Methylation, miRNA, Chromatin Modifiers

  • Chapter
  • First Online:
Prostate Cancer: Shifting from Morphology to Biology

Abstract

In prostate cancer DNA methylation have been recorded as one of the main epigenetic event. More than 50 genes, in fact, have been found hypermethylated in prostate cancer (Li et al., Biochim Biophys Acta 1704:87–102, 2004; Nelson et al., Front Biosci 12:4254–4266, 2007). However, only a small number of genes, e.g. RASSF1A, RARB2, APC, and GSTP1 (Florl et al., Br J Cancer 91:985–994, 2004) or GSTP1, APC and MDR1 (Enokida et al., Clin Cancer Res 11:6582–6588, 2005) can help to discriminate between benign and cancerous changes in the prostate, by hypermethylation assay. The assays for genes hypermethylated in a fraction of the cases may help to distinguish different subgroups of prostate cancer, even if the low sensitivity of the assay is mostly dependent on the amount of DNA obtained by the primary sample (biopsy, serum, urine). Then, the reliability of this tests, unfortunately, is still low (Li et al., Biochim Biophys Acta 1704:87–102, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison A, Warren A, Neal D, Rabbitts P (2007) RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate 67:638–644

    Article  PubMed  CAS  Google Scholar 

  • Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170

    Article  PubMed  CAS  Google Scholar 

  • Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 115:1454–1459

    PubMed  CAS  Google Scholar 

  • Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV (2006) Essential role for activation of the polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5:1886–1901

    Article  PubMed  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is down- stream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  PubMed  CAS  Google Scholar 

  • Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Li LC et al (2005) Multigene methylation analysis for detection and staging of prostate cancer. Clin Cancer Res 11:6582–6588

    Article  PubMed  CAS  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  PubMed  CAS  Google Scholar 

  • Florl AR, Steinhoff C, Muller M, Seifert HH, Hader C, Engers R et al (2004) Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 91:985–994

    PubMed  CAS  Google Scholar 

  • Guan M, Zhou X, Soulitzis N, Spandidos DA, Popescu NC (2006) Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clin Cancer Res 12:1412–1419

    Article  PubMed  CAS  Google Scholar 

  • Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95

    Article  PubMed  CAS  Google Scholar 

  • Gunster MJ, Raaphorst FM, Hamer KM, den Blaauwen JL, Fieret E, Meijer CJ et al (2001) Differential expression of human Polycomb group proteins in various tissues and cell types. J Cell Biochem Suppl 36:129–143

    Article  PubMed  Google Scholar 

  • Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA (2007) Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther 6:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, Muller M, Jung V et al (2008) Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 5:123–136

    PubMed  CAS  Google Scholar 

  • Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF et al (1998) Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 58:5310–5314

    PubMed  CAS  Google Scholar 

  • Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261

    Article  PubMed  CAS  Google Scholar 

  • Li LC, Okino ST, Dahiya R (2004) DNA methylation in prostate cancer. Biochim Biophys Acta 1704:87–102

    PubMed  CAS  Google Scholar 

  • Liu L, Zhang J, Bates S, Li JJ, Peehl DM, Rhim JS et al (2005) A methylation profile of in vitro immortalized human cell lines. Int J Oncol 26:275–285

    PubMed  CAS  Google Scholar 

  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533

    Article  PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor- dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  • Morey K Sr, Smiraglia DJ, James SR, Moser MT, Foster BA, Karpf AR (2008) Stage-specific alterations of DNA methyltransferase expression, DNA hyper- methylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res 6:1365–1374

    Article  Google Scholar 

  • Nelson WG, Yegnasubramanian S, Agoston AT, Bastian PJ, Lee BH, Nakayama M et al (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12:4254–4266

    Article  PubMed  CAS  Google Scholar 

  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793

    Article  PubMed  CAS  Google Scholar 

  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    Article  PubMed  CAS  Google Scholar 

  • Rajasekhar VK, Begemann M (2007) Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25:2498–2510

    Article  PubMed  CAS  Google Scholar 

  • Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212

    Article  PubMed  CAS  Google Scholar 

  • Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T (2006) The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer 45:639–645

    Article  PubMed  CAS  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    Article  PubMed  CAS  Google Scholar 

  • van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA et al (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are over- expressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 52:455–463

    Article  PubMed  Google Scholar 

  • Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT (2008) The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68:9703–9711

    Article  PubMed  CAS  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z et al (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104:19226–19231

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Leav I, Leung YK, Wu M, Liu Q, Gao Y et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Celetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Celetti, A. (2013). Epigenetic Mechanisms: Histone Acetylation, DNA Methylation, miRNA, Chromatin Modifiers. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_12

Download citation

Publish with us

Policies and ethics