Skip to main content

The Chl a Carboxylic Biosynthetic Routes: (Photo) Conversion of Protochlorophyllides (Pchlides) a to Chlorophyllide (Chlide) a

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1097 Accesses

Abstract

DV and MV Chlides a are the main immediate precursors of Chl a. They are formed via multiple light-dependent and light-independent biosynthetic routes from Pchlide a. In all cases, the reaction involves reduction of the double bond at position 7–8 of the macrocycle by addition of two trans-hydrogens. Most of the investigations of the photoreduction of Pchlide a have dealt with transformable long wavelength Pchlide a-HochromeE650 F657 (t-LW-Pchlide a-H (E650 F657). The latter is a ternary complex of Pchlide a, NADPH and Pchlide a oxidoreductase, a shuttling photoenzyme (Fig. 9.1).

One of the true measures of greatness resides in the willingness and ability of truly great men to recognize excellence when they encounter it

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR, Parham R, Rebeiz CA (1977) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  Google Scholar 

  • Adamson H, Packer N (1984) Dark-synthesis of chlorophyll in vivo and dark reduction of protochlorophyll ide in vitro by pea chloroplasts. In: Sironval C, Brouers M (eds) Protochlorophyllide reduction and greening. Martinus Nijhoff, Boston, pp 353–363

    Chapter  Google Scholar 

  • Adamson HY, Hiller HJ, Walmsley J (1997) Protochlorophyllide reduction and greening in angiosperms: an evolutionary perspective. J Photochem Photophys 41:201–221

    Article  CAS  Google Scholar 

  • Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856

    Article  CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of the translatable mRNA coding for the NADPH:protochlorophyllide:oxidoreductase. Eur J Biochem 120:89–93

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE, Falk H (1980) The protochlorophyll ide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyll ide oxidoreductase. Eur J Biochem 111:251–258

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 43:87–100

    Article  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperlink U, Apel K (1995) Identification of NADPH:protochlorophyll ide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980) Chloroplast biogenesis 30. Chlorophyll(ide) (E459 F675) and Chlorophyll(ide) (E449 F675) the first detectable products of divinyl and monovinyl protochlorophyll photoreduction. Plant Sci Lett 18:343–350

    Article  CAS  Google Scholar 

  • Belanger FC, Dugan JX, Rebeiz CA (1982) Chloroplast biogenesis: identification of chlorophyllide a (E458F674) as a divinyl chlorophyllide a. J Biol Chem 257:4849–4858

    PubMed  CAS  Google Scholar 

  • Boardman NK (1962) Biochim Biophys Acta 64:279–288

    Google Scholar 

  • Bonner B (1969) A short-lived intermediate form in the in vivo conversion of protochlorphyll ide 650 to chlorophyllide 684. Plant Physiol 44:739–747

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis 51. Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79:1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Rebeiz CA (1978) Chloroplast biogenesis XXII. Contribution of short wavelength and long wavelength protochlorophyll species to the greening of higher plants. Plant Physiol 61:824–829

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Bazzaz MB, Fullet SE, Rebeiz CA (1977) Chloroplast biogenesis XX. Accumulation of porphyrin and phorbin pigments in cucumber cotyledons during photoperiodic greening. Plant Physiol 60:743–746

    Article  PubMed  CAS  Google Scholar 

  • Dehesh KM, Hauser M, Apel K (1986) Light-induced changes in the distribution of the 36,000 Mr polypeptide of NADPH:protochlorophyllide oxidoreductase within different cellular compartments of barley (Hordeum vulgare, L.). I. Localization by immunoblotting in isolated plastids and total extracts. Planta 169:162–171

    Article  CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982a) Chloroplast biogenesis 37. Induction of chlorophyllide a (E459 F675) accumulation in higher plants. Plant Sci Lett 24:27–37

    Article  CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982b) Chloroplast biogenesis 42. Conversion of DV chlorophyllide a to monovinyl chlorophyllide a in vivo and in vitro. Plant Sci Lett 27:137–145

    Article  CAS  Google Scholar 

  • Gassman M (1973) The conversion of photoinactive protochlorophyllide 633 to phototransformable protochlorophyll ide 650 in etiolated bean leaves treated with delta-aminolevulinic acid. Plant Physiol 52:590–594

    Article  PubMed  CAS  Google Scholar 

  • Gassman M, Granick S, Mauzerall D (1968) A rapid spectral shift change in etiolated red kidney leaves following phototransformation of protochlorophyllide. Biochem Biophys Res Commun 32:295–300

    Article  PubMed  CAS  Google Scholar 

  • Griffiths WT (1974) Source of reducing equivalents for the in vitro synthesis of chlorophyll from protochlorophyll. FEBS Lett 46:301–304

    Article  PubMed  CAS  Google Scholar 

  • Holtorf R, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A 92:3254–3258

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Murakami S (1982) Measurement and identification of NADPH:protochlorophyll ide oxidoreductase solubilized with Triton-X-100 from etioplast membranes of squash cotyledons. Plant Cell Physiol 23:1089–1099

    CAS  Google Scholar 

  • Ioannides I, Fasoula DA, Robertson KR, Rebeiz CA (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Kay SA, Griffiths WT (1983) Light-induced breakdown of NADPH-protochlorophyllide oxidoreductase in vitro. Plant Physiol 72:229–236

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO, Tilney-Basset RAE (1967) The plastids: their chemistry, structure, growth, and inheritance. Freeman, London, pp 504–506

    Google Scholar 

  • Klement H, Helfrich M, Oster U, Schoch S, Rudiger W (1999) Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L: purification and substrate specificity. Eur J Biochem 265(3):862–874

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84. Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications. Springer, Dordrecht/London, pp 25–38

    Chapter  Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  PubMed  CAS  Google Scholar 

  • Koski VM, French CS, Smith JHC (1951) The action spectrum for the transformation of protochlorophyll to chlorophyll in normal and albino corn seedlings. Arch Biochem Biophys 31:1–17

    Article  PubMed  CAS  Google Scholar 

  • Lebedev N, Timko MP (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro. Proc Natl Acad Sci U S A 96(17):9954–9959

    Article  PubMed  CAS  Google Scholar 

  • Muir HM, Neuberger M (1949) The biogenesis of porphyrins. The distribution of 15N in the ring system. Biochem J 45:163

    CAS  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takmiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:133–136

    Article  PubMed  CAS  Google Scholar 

  • Oster U, Tanaka R, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific NADPH-dependent enzyme. Biochemistry 31:8460–8464

    Article  PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an ecogenous substrate. Anal Biochem 231:164–169

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CC, Rebeiz CA (1986) Chloroplast biogenesis 53: ultrastructural study of chloroplast development during photoperiodic greening. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. Alan Liss, New York, pp 389–396

    Google Scholar 

  • Reinbothe S, Reinbothe C, Holtorf H, Apel K (1995) Two NADPH:protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of POR A during the light-induced greening of etiolated seedlings. Plant Cell 7:1933–1940

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Lebedev N, Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397:80–84

    Article  CAS  Google Scholar 

  • Rudiger W, Schoch S (1991) The last steps of chlorophyll biosynthesis. In: Scheer H (ed) Chlorophylls. Academic Press, New York, pp 451–464

    Google Scholar 

  • Runge S, Ulrich S, Frick J, Apel K, Armstrong GA (1996) Distinct roles for light-dependent NADP:ptotochlorophyllide oxidorectase (POR) A and B during greening in higher plants. Plant J 9:513–523

    Article  PubMed  CAS  Google Scholar 

  • Santel HJ, Apel K (1981) The protochlorophyll ide Holochrome of Barley (Hordeum vulgare L.). The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120:95–103

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Franck F (1998) Chlorophyll synthesis in dark-grown pine primary needles. Plant Physiol 118:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44:147–172

    CAS  Google Scholar 

  • Shulz R, Senger H (1993) Protochlorophyllide reductase: a key enzyme in the greening process. In: Sundqvist C, Ryberg M (eds) Pigment-protein complexes in plastids: synthesis and assembly. Academic Press, New York, pp 179–218

    Google Scholar 

  • Sironval C, Kuyper Y (1972) The reduction of protochlorophyllide into chlorophyllide. Photosynthetica 6:254–275

    CAS  Google Scholar 

  • Sironval C, Kuyper Y, Michel JM, Brouers M (1967) The primary photoact in the conversion of protochlorphyll ide into chlorophyllide. Stud Biophys 5:43–50

    Google Scholar 

  • Smith JHC, Benitez A (1954) The effect of temperature on the conversion of protochlorophyll to chlorophyll a in etiolated barley leaves. Plant Physiol 29:135–143

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Frick G, Armstrong G et al (2001) POR C of Arabidopsis thaliana: a third light-and NADPH-dependent protochlorophyllide oxidoreductase that is differently regulated by light. Plant Mol Biol 47:805–813

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Ann Rev Genet 31:61–89

    Article  PubMed  CAS  Google Scholar 

  • Thorne SW (1971) The greening of etiolated bean leaves I. The initial photoconversion process. Biochim Biophys Acta 226:113–127

    Article  PubMed  CAS  Google Scholar 

  • Thorne SW, Boardman NK (1972) Biochim Biophys Acta 267:104–110

    Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1987) Non-equivalence of glutamic acid and delta-aminolevulinic acid as substrates for protochlorophyllide and chlorophyll biosynthesis in darkness. In: Biggins J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff, Amsterdam, pp 439–443

    Chapter  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • Wiktorsson B, Ryberg M, Sundqvist C (1996) Aggregation of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34:23–34

    CAS  Google Scholar 

  • Yuichi F, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchB subunits. In vitro confirmation of nitogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Chl a Carboxylic Biosynthetic Routes: (Photo) Conversion of Protochlorophyllides (Pchlides) a to Chlorophyllide (Chlide) a . In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_9

Download citation

Publish with us

Policies and ethics