Skip to main content

The Chl a Carboxylic Biosynthetic Routes: Protochlorophyllide a

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1089 Accesses

Abstract

Protochlorophyllide a (Pchlide a) (Fig. 8.1) is the immediate precursor chlorophyllide a (Chlide a). The proposed role of Pchlide a as an intermediate in the Chl biosynthetic pathway was based on the detection of Pchlide a in X-ray Chlorella mutants inhibited in their capacity to form Chl (Granick 1950a). It was conjectured that since the mutants had lost the ability to form Chl but accumulated Pchlide a, the latter was a logical precursor of Chla. On the basis of absorbance spectroscopic determinations the accumulated Mg-Proto was assigned by Granick a monovinyl (MV) chemical structure (Fig. 8.1, II), with an ethyl group at positions 2 and a vinyl group at position 4 of the tetrapyrrole macrocycle.

Great spirits have always encountered violent opposition from mediocre minds (Albert Einstein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G et al (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1979) Chloroplast biogenesis XXVII. Detection of novel chlorophyll and chlorophyll precursors in higher plants. Biochem Biophys Res Commun 88:365–472

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980a) Chloroplast biogenesis. Detection of divinyl protochlorophyllide in higher plants. J Biol Chem 255:1266–1272

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980b) Chloroplast biogenesis. Detection of divinyl protochlorophyllide ester in higher plants. Biochemistry 19:4875–4883

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK (1966) Protochlorophyll. In: Vernon LP, Seeley GR (eds) The chlorophylls. Academic, New York, pp 437–479

    Google Scholar 

  • Boucher LJ, Katz JJ (1967) Aggregation of metalloporphyrins. J Am Chem Soc 89:4703–4708

    Article  CAS  Google Scholar 

  • Butler R, Briggs WR (1966) The relation between structure and pigments during the first stages of proplastid greening. Biochim Biophys Acta 112:45–53

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis 51. Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79:1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Rebeiz CA (1978) Chloroplast biogenesis 22. Contribution of short wavelength and long wavelength protochlorophyll species to the greening of higher plants. Plant Physiol 61:824–829

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Rebeiz CA (1981) Chloroplast biogenesis 34. Spectrofluorometric characterization in situ of the protochlorophyll species in etiolated tissues of higher plants. Plant Physiol 67:98–103

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Bazzaz MB, Fullet SE et al (1977) Chloroplast biogenesis XX. Accumulation of porphyrin and phorbin pigments in cucumber cotyledons during photoperiodic greening. Plant Physiol 60:743–746

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982a) Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem Biophys Res Commun 106:466–470

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982b) Chloroplast culture VIII. A new effect of kinetin in enhancing the synthesis and accumulation of protochlorophyllide in vitro. Biochem Biophys Res Commun 104:837–843

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Michel H (1991) Crystallography of chlorophyll proteins. In: Scheer H (ed) Chlorophylls. CRC press, Boca Raton, pp 613–625

    Google Scholar 

  • Duggan JX, Rebeiz CA (1982) Chloroplast biogenesis 37: induction of chlorophyllide a (E459F675) accumulation in higher plants. Plant Sci Lett 24:27–37

    Article  CAS  Google Scholar 

  • Dujardin E, Sironval C (1970) The reduction of protochlorphyllide into chlorophyllide III. The phototransformation of the forms of the protochlorophyllide-lipoprotein complex found in darkness. Photosynthetica 4:129–138

    CAS  Google Scholar 

  • Ellsworth RK, Aronoff S (1969) Investigations of the biogenesis of chlorophyll a. IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethyl ester and Mg-vinylpheoporphine a5, obtained from Chlorella mutants. Arch Biochem Biophys 130:374–383

    Article  PubMed  CAS  Google Scholar 

  • Granick S (1948) Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem 175:333–342

    PubMed  CAS  Google Scholar 

  • Granick S (1950a) Magnesium vinyl pheoporphyrin a 5, another intermediate in the biological synthesis of chlorophyll. J Biol Chem 183:713–730

    CAS  Google Scholar 

  • Granick S (1950b) The structural and functional relationships between heme and chlorophyll. Harvey Lect 44:220–245

    Google Scholar 

  • Henningsen KW, Kahn A (1971) Photoactive subunits of protochlorophyll(ide) holochrome. Plant Physiol 47:685–690

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Smith JHC, French CS (1953) The absorption and fluorescence properties of natural protochlorophylls. Yearb Carneg Inst 52:153–155

    Google Scholar 

  • Ioannides IM, Fasoula DM, Robertson KR (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Ioannides IM, Shedbalkar VP, Rebeiz CA (1997) Quantitative determination of 2-monovinyl protochlorophyll(ide) b by spectrofluorometry. Anal Biochem 249:241–244

    Article  PubMed  CAS  Google Scholar 

  • Jones OTG (1963a) Magnesium 2,4-divinyl phaeoporphyrin a5 monomethyl ester, a protochlorophyll-like pigment produced by Rhodopseudomonas spheroides. Biochem J 89:182–189

    PubMed  CAS  Google Scholar 

  • Jones OTG (1963b) The inhibition of bacteriochlorphyll biosynthesis in Rhodopseudomonas spheroides by 8-hydroxyquinoline. Biochem J 88:335–343

    PubMed  CAS  Google Scholar 

  • Kahn A, Boardman NK, Thorne SW (1970) Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex in vivo and in vitro. J Mol Biol 48:85–101

    Article  PubMed  CAS  Google Scholar 

  • Katz JJ, Dougherty RC, Boucher LC (1966) Infrared and nuclear magnetic resonance spectroscopy of chlorophyll. In: Vernon LP, Seely GR (eds) The chlorophylls. Academic, New York, pp 185–251

    Google Scholar 

  • Kim JS, Kolossov V, Rebeiz CA (1997) Chloroplast biogenesis 76: regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyllide a is controlled by plastid membrane and stromal factors. Photosynthetica 34:569–581

    Article  Google Scholar 

  • Kolossov VL, Rebeiz CA (2003) Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 278(50):49675–49678

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications. Springer, Dordrecht, pp 25–38

    Chapter  Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  PubMed  CAS  Google Scholar 

  • Koski VM (1950) Chlorophyll formation in seedlings of Zea mays L. Arch Biochem 29:339–343

    PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977a) Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts. J Biol Chem 252:8347–8349

    PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977b) Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium protoporphyrin monoester by developing chloroplasts. J Biol Chem 252:4022–4024

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Belanger FC (1984) Chloroplast biogenesis 46: calculation of net spectral shifts induced by axial ligand coordination in metalated tetrapyrroles. Spectrochim Acta 40A:793–806

    CAS  Google Scholar 

  • Rebeiz CA, Yaghi M, Abou Haidar M et al (1970) Protochlorophyll biosynthesis in cucumber (Cucumis sativus, L.) cotyledons. Plant Physiol 46:57–63

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Nandihalli UB, Reddy K (1991) Photodynamic herbicides and chlorophyll biosynthesis modulators. In: Baker NR, Percival M (eds) Herbicides. Elsevier, Amsterdam, pp 173–208

    Google Scholar 

  • Rebeiz CA, Kolossov VI, Briskin D et al (2003) Chloroplast biogenesis 86: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biotechnological spin-offs. In: Nalwa N (ed) Handbook of photochemistry and photobiology. American Scientific Publisher, Los Angeles, pp 183–248

    Google Scholar 

  • Runge S, Ulrich S, Frick J et al (1996) Distinct roles for light-dependent NADP: ptotochlorophyllide oxidoreductase (POR) A and B during greening in higher plants. Plant J 9(4):513–523

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Siegelman HW (1968) Purification of protochlorophyllide holochrome. Plant Physiol 43:990–996

    Article  PubMed  CAS  Google Scholar 

  • Spiller SC, Castelfranco AM, Castelfranco PA (1982) Effect of iron and oxygen on chlorophyll biosynthesis. Plant Physiol 69:107–111

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991) In vitro assay of the chlorophyll biosynthetic enzyme Mg- chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A 88:5789–5793

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Rezzano IN et al (1988) The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies of the mechanism and specificity of the reaction sequence. Biochem J 255:685–692

    PubMed  CAS  Google Scholar 

  • Wolff JB, Price L (1957) Terminal steps of chlorophyll a biosynthesis in higher plants. Arch Biochem Biophys 72:293–301

    Article  PubMed  CAS  Google Scholar 

  • Wong Y-S, Castelfranco PA (1985) Properties of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Plant Physiol 79:730–733

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Rebeiz CA (1984) Chloroplast biogenesis 45: molecular structure of protochlorophyllide (E443 F625) and of chlorophyllide a (E458 F674). Tetrahydron 40(4):659–664

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Chl a Carboxylic Biosynthetic Routes: Protochlorophyllide a . In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_8

Download citation

Publish with us

Policies and ethics