Skip to main content

The Iron and Magnesium Branches of the Porphyrin Biosynthetic Pathway

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1114 Accesses

Abstract

Protoporphyrin IX is a branching point for heme and Chl biosynthesis. Insertion of ferrous iron into Proto leads to the formation of protoheme (Fig. 6.1), while insertion of Mg into the Proto macrocycle, leads to the formation of Mg-proto which is the precursor of all Mg-porphyrins and Chls in nature (see below).

In 1844 Verdiel, suggested a relationship between chlorophyll and heme upon chemical conversion of chlorophyll to a red pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light–dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Bassi R, Rigoni F, Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52:1187–1206

    Article  CAS  Google Scholar 

  • Calvert JG, Pitts JN (1967) Photochemistry. Wiley, New York

    Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Rebeiz CA (1982) Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem Biophys Res Commun 106:466–470

    Article  CAS  PubMed  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG et al (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A 92:1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Gibson LCD, Marrison JL, Leech RM et al (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Plant Physiol 111:61–71

    Article  CAS  PubMed  Google Scholar 

  • Goldberg A, Ashenbrucker M, Cartwright GE et al (1956) Studies on the biosynthesis of heme in vitro by avian erythrocytes. Blood 11:821–833

    CAS  PubMed  Google Scholar 

  • Ioannides IM, Fasoula DM, Robertson KR et al (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW et al (1995) Expression of the chlI, chlD and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271(28):1662–1667

    Google Scholar 

  • Jensen PE, Gibson LCD, Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependant interaction of the ChlI and ChlD subunits. Biochem J 339(1):127–134

    Article  CAS  PubMed  Google Scholar 

  • Kannangara CG, Von Wettstein D (2010) Magnesium chelatase. In: Rebeiz CA, Benning C, Bohnert HJ (eds) The chloroplast: basics and applications, vol 31. Springer, Dordrecht, pp 79–88

    Chapter  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ (eds) The chloroplast: basics and applications. Springer, Dordrecht, pp 25–38

    Chapter  Google Scholar 

  • Kolossov V, Ioannides IM, Kulur S et al (1999) Chloroplast biogenesis 82: development of a cell-free system capable of the net synthesis of chlorophyll(ide) b. Photosynthetica 36:253–258

    Article  CAS  Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Press, New York

    Book  Google Scholar 

  • Lee HJ, Ball M, Rebeiz CA (1991) Intraplastidic localization of the enzymes that convert delta-aminolevulinic acid to protoporphyrin IX in etiolated cucumber cotyledons. Plant Physiol 96:910–915

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Ball MD, Parham R et al (1992) Chloroplast biogenesis 65. Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Little HN, Jones OTG (1976) The subcellular localization and properties of the ferrochelatase of etiolated barley. Biochem J 156:309–314

    CAS  PubMed  Google Scholar 

  • Nakayama M, Masuda T, Bando T et al (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol 39(3):275–284

    Article  CAS  PubMed  Google Scholar 

  • Pardo AD, Chereskin BM, Castelfranco PA et al (1980) ATP requirement for Mg chelatase in developing chloroplasts. Plant Physiol 65:956–960

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA (2002) Analysis of intermediates and end products of the chlorophyll biosynthetic pathway. In: Smith A, Witty M (eds) Heme chlorophyll and bilins, methods and protocols. Humana Press, Totowa, pp 111–155

    Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Belanger FC, McCarty SA et al (1981) Biosynthesis and accumulation of novel chlorophyll a and b chromophoric species in green plants. In: Akoyunoglou G (ed) Chloroplast development, Photosynthesis. Balaban International Services, Philadelphia, pp 197–212

    Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadje M et al (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol Cell Biochem 58:97–125

    Article  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Daniell H (1984) Chloroplast culture X: thylakoid assembly in vitro. Isr J Bot 33:225–235

    CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Mayasich JM et al (1988) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit Rev Plant Sci 6:385–434

    Article  CAS  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA et al (1994) Chlorophyll biosynthetic heterogeneity. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the terapyrrole pigments. Wiley, New York, pp 177–193

    Google Scholar 

  • Rebeiz CA, Gut LJ, Keywan L et al (1995) Photodynamics of porphyric insecticides. Crit Rev Plant Sci 14:329–366

    Article  CAS  Google Scholar 

  • Rebeiz CA, Ioannides IM, Kolossov V et al (1999) Chloroplast biogenesis 80. Proposal of a unified multibranched chlorophyll a/b biosynthetic pathway. Photosynthetica 36:117–128

    Article  CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Smith JHC, French CS (1963) The major accessory pigment in photosynthesis. Annu Rev Plant Physiol 14:181–224

    Article  CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1977a) Chloroplast biogenesis: detection of Mg-protoporphyrin chelatase in vitro. Arch Biochem Biophys 180:178–185

    Article  CAS  PubMed  Google Scholar 

  • Smith BB, Rebeiz CA (1977b) Spectrofluorometric determination of Mg-protoporphyrin monoester and longer wavelength metalloporphyrins in the presence of Zn-protoporphyrin. Photochem Photobiol 26:527–532

    Article  CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1979) Chloroplst biogenesis XXIV. Intrachloroplastic localization of the biosynthesis and accumulation of protoporphyrin IX, magnesium protoporphyrin IX, magnesium-protoporphyrin monoester and longer wavelength metalloporphyrins during greening. Plant Physiol 63:227–231

    Article  CAS  PubMed  Google Scholar 

  • Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31:61–89

    Article  CAS  PubMed  Google Scholar 

  • Taketani S, Tokunaga R (1981) Rat liver ferrochelatase. Purification, properties and stimulation by fatty acids. J Biol Chem 256:12748–12753

    CAS  PubMed  Google Scholar 

  • Turro NJ (1965) Molecular photochemistry. Benjamin, London

    Google Scholar 

  • Walker CJ, Weinstein JD (1991) In vitro assay of the chlorophyll biosynthetic enzyme Mg- chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A 88:5789–5793

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JD, Beale SI (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in euglena gracilis. J Biol Chem 258:6799–6807

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Iron and Magnesium Branches of the Porphyrin Biosynthetic Pathway. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_6

Download citation

Publish with us

Policies and ethics