Skip to main content

Reactions Between δ-Aminolevulinic Acid and Protoporphyrin IX

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1101 Accesses

Abstract

The reactions between ALA and Proto are shared between heme and Chl biosynthesis. Since most of the Chl biosynthetic heterogeneity is rooted in reactions further down the Chl biosynthetic pathway, the reactions between ALA and Proto will be briefly discussed.

A solid edifice has to be built on solid foundations (Constantin A. Rebeiz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar M (1994) The modification of acetate and propionate side chains during the biosynthesis of haem and chlorophylls: mechanistic and stereochemical studies. In: The biosynthesis of tetrapyrrole pigments. Ciba Foundation symposium, vol 180. Wiley, Chichester, pp 131–155

    Google Scholar 

  • Averina NG (1998) Mechanisms of regulation and interplastid location of chlorophyll biosynthesis. Biol Membr 15(5):504–516

    CAS  Google Scholar 

  • Averina NG, Rudoi AB, Fradkin LI (1993) Centers of chlorophyll biosynthesis – current notions. Biofizika 38(6):1082–1086

    CAS  Google Scholar 

  • Battersby AR, Donald MC, Redfern JR et al (1976) Biosynthesis of porphyrins and related macrocycles. V. Structural integrity of the type III porphyrinogen macrocycle in an active biological system; studies on the aromitazation of protoprphyrin-IX. J Chem Soc Perkins Trans 1:266–273

    Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ et al (1979) Order of assembly of the four pyrrole rings during the biosynthesis of the natural porphyrins. J Chem Soc Chem Commun:539–541

    Google Scholar 

  • Battersby AR, Fookes CJR, Gustafson-Potter KE et al (1982a) Biosynthesis of porphyrins and related macrocycles. Part 18. Proof by spectroscopy and synthesis that unarranged hydroxybilane is the product from deaminase and the substrate for cosynthetase in the biosynthesis of uroporphyrinogen-III. J Chem Soc Perkins Trans 1:2427

    Google Scholar 

  • Battersby AR, Fookes CJR, Gustafson-Potter KE et al (1982b) Biosynthesis of porphyrins and related macrocycles. XVII. Chemical and enzymic transformation of isomeric aminoethylbilanes into uroporphyrinogens: proof that unrearranged bilnae is the preferred enzymic substrate and detection of a transient intermediate. J Chem Perkin Trans 1:2413

    Article  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ et al (1983) Biosynthesis of porphyrins and related macrocycles. Part 20. Purification of deaminase and studies on its mode of action. J Chem Soc Perkins Trans 1:3031

    Google Scholar 

  • Beale SI, Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labelled precursors in greening plant tissues. Plant Physiol 53:291–296

    Article  PubMed  CAS  Google Scholar 

  • Beale SI, Foley T, Dzelzkalns V (1981) δ−Aminolevulinic acid synthetase from Euglena gracilis. Proc Natl Acad Sci U S A 78(3):1666–1669

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L (1958a) The enzymic synthesis of porphyrins from porphobilinogen. I. Uroporphyrinogen I. J Biol Chem 233:501–509

    PubMed  CAS  Google Scholar 

  • Bogorad L (1958b) The enzymic synthesis of porphyrins from porphobilinogen. II. Uroporphyrin III. J Biol Chem 233:510–515

    PubMed  CAS  Google Scholar 

  • Chen J, Miller GW, Takemoto JY (1981) Biosynthesis of δ−aminolevulinic acid in Rhodopseudomonas spaeroides. Arch Biochem Biiophys 208(1):221–228

    Article  CAS  Google Scholar 

  • Drazic G, Bogdanovic M (2000) Gabaculine does not inhibit cytokinin-stimulated biosynthesis of delta-aminolevulinic acid. Plant Sci 154(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Gibson KD, Neuberger A, Scott JJ (1955) The purification and properties of 5-aminolevulinic acid dehydratase. Biochem J 70:618–629

    Google Scholar 

  • Gibson HD, Laver WG, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes. Biochem J 70:71–81

    PubMed  CAS  Google Scholar 

  • Gorchein A (1972) Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells. Biochem J 127:97–106

    PubMed  CAS  Google Scholar 

  • Granick S (1948) Protoporphyrin 9 as a precursor of chlorophyll. J Biol Chem 172:717–727

    PubMed  CAS  Google Scholar 

  • Granick S (1963) The pigments of the biosynthetic chain of chlorophyll and their interactions with light. In: Proceedings of the fifth international congress of biochemistry, vol VI. Pergmon Press, New York, pp 176–186

    Google Scholar 

  • Granick S, Mauzerall D (1958) Porphyrin biosynthesis in erythrocytes. II. Enzymes converting delta-aminolevulinic acid to coproporphyrinogen. J Biol Chem 232:1119–1140

    PubMed  CAS  Google Scholar 

  • Hart GJ, Miller AD, Leeper FJ et al (1987) Biosynthesis of the natural porphyrins: proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Am Chem Soc Chem Commun:1762–1765

    Google Scholar 

  • Jackson AH, Sancovich HA, Ferramola AM et al (1976) Macrocyclic intermediates in the biosynthesis porphyrins. Philos Trans R Soc Lond B Biol Sci 273:191–206

    Article  PubMed  CAS  Google Scholar 

  • Jackson AH, Sancovich HA, Ferramola AM (1980) Synthetic and biosynthetic studies of porphyrins. III. Structures of intermediates between uroporphyrinogen III and coproporphyrinogen III: synthesis of fourteen heptacarboxylic, hexacarboxylic and pentacarboxylic porphyrins related to uroporphyrin III. Bioorg Chem 9:71–120

    Article  CAS  Google Scholar 

  • Jacobs JM, Jacobs NJ (1987) Oxidation of protoporphyrinogen to protoporhyrin a step in chlorophyll and haem biosynthesis. Biochem J 244:219–224

    PubMed  CAS  Google Scholar 

  • Jordan PM, Seehra JS (1979) The biosynthesis of uroporphyrinogen III: order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104:364–366

    Article  PubMed  CAS  Google Scholar 

  • Jordan PM, Seehra JS. (1980) 13C NMR as a probe for the study of enzyme catalyzed reactions. Mechanism of action of 5-aminolevulinic acid dehydratase. FEBS Lett 114:283–286

    Google Scholar 

  • Jordan PM, Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225:87–92

    Article  PubMed  CAS  Google Scholar 

  • Jordan PM, Mgbeje BIA, Thomas SD et al (1988) Nucleotide sequence of the hemD gene of Escherichia coli encoding uroporphyrinogen III synthetase and initial evidence for a hem operon. Biochem J 249:613–616

    PubMed  CAS  Google Scholar 

  • Jordan PM, Cheung RP, Sharma RP et al (1989) A cyclic intermediate, 2-hydroxy-3-aminotetrahydropyran-1-one (HAT) as a precursor for 5-aminolevulinic acid in greening barley. Tet Lett 34:1177

    Article  Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP et al (1984) Biosynthesis of δ-aminolevulinic acid in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49:417–437

    Article  CAS  Google Scholar 

  • Kennedy GY, Jackson AH, Kenner GW et al (1970) Isolation, structure and synthesis of a tricarboxylic porphyrin from harderian glands of rat. FEBS Lett 7:205–206

    Google Scholar 

  • Klein O, Senger H (1978) Two biosynthetic pathways to δ−aminolevulinic acid in a pigment mutant of the green alga Scenedesmus obliquus. Plant Physiol 62:10–13

    Article  PubMed  CAS  Google Scholar 

  • Kohno H, Furukawa T, Yoshihaga T et al (1983) Coproporphyrinogen oxidase. J Biol Chem 268:21359–21363

    Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    Article  PubMed  CAS  Google Scholar 

  • Kopetz KJ, Kolossov VL, Rebeiz CA (2004) Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors. Anal Biochem 329:207–219

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ball M, Rebeiz CA (1991) Intraplastidic localization of the enzymes that convert delta-aminolevulinic acid to protoporphyrin IX in etiolated cucumber cotyledons. Plant Physiol 96:910–915

    Article  PubMed  CAS  Google Scholar 

  • Lehnen LPJ, Sherman TD, Beceril JM et al (1990) Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pest Biochem Physiol 37:239–248

    Article  CAS  Google Scholar 

  • Luo J, Lim CK (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289:529–532

    PubMed  CAS  Google Scholar 

  • Matringe M, Scalla R (1988) Studies on the mode of action of acifluorfen-methyl in nonchlorophyllous soybean cells. Effects of acifluorfen-methyl on cucumber cotyledons: porphyrin accumulation. Plant Physiol 86:619–622

    Article  PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977) Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts. J Biol Chem 252:8347–8349

    PubMed  CAS  Google Scholar 

  • Mauzerall D, Granick S (1958) Porphyrin biosynthesis in erythrocytes. III. Uroporphyrinogen and its decarboxylation. J Biol Chem 232:1141–1162

    PubMed  CAS  Google Scholar 

  • Neve RA, Labbe RF (1956) Reduced uroporphyrinogen III in the biosynthesis of heme. J Am Chem Soc 78:691–692

    Article  CAS  Google Scholar 

  • Poulson R, Polglase WJ (1975) The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase activity in mitochondrial extracts of Saccharomyces cerevisiae. J Biol Chem 250:1269–1274

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Hopen HJ et al (1984) Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microbiol Technol 6:390–401

    Article  CAS  Google Scholar 

  • Rebeiz N, Arkins S, Kelley KW et al (1996) Enhancement of coproporphyrinogen III transport into isolated leucocyte mitochondria by ATP. Arch Biochem Biophys 333:475–481

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Romana M, LeBoulch P, Romeo PH (1987) Rat uroporphyrinogen decarboxylase cDNA: nucleotide sequence and comparison to human uroporphyrinogen decarboxylase. Nucleic Acids Res 15:7211

    Article  PubMed  CAS  Google Scholar 

  • Romeo PH, Raich N, Duhart A et al (1986) Molecular cloning and nucleotide sequence of a complete human uroporphyrinogen decarboxylase cDNA. J Biol Chem 261:9825–9831

    PubMed  CAS  Google Scholar 

  • Sano S, Granick S (1961) Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem 236:1173–1180

    PubMed  CAS  Google Scholar 

  • Schmid R, Shemin D (1955) The enzymic formation of porphobilinogen from 5-aminolevulinic acid and its conversion to protoporphyrin. J Am Chem Soc 77:506–508

    Article  CAS  Google Scholar 

  • Siepker LJ, Ford M, de Kock R et al (1987) Purification of bovine protoporphyrinogen oxidase: immunological cross-reactivity and structural relationship to ferrochelatase. Biochim Biophys Acta 913:349–358

    Article  PubMed  CAS  Google Scholar 

  • Spencer P, Jordan PM (1994) Investigation of the nature of the two metal-binding sites in 5-amiolevulinic acid dehydratase from Escherichia coli. Biochem J 300:373–381

    PubMed  CAS  Google Scholar 

  • Thomas SD, Jordan PM (1986) Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nucleic Acids Res 14:6215–6226

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Che F-S, Terashima K et al (2000) Purification and properties of protoporphyrinogen oxidase from spinach. Plant Cell Physiol 41(7):880–892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). Reactions Between δ-Aminolevulinic Acid and Protoporphyrin IX. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_5

Download citation

Publish with us

Policies and ethics