Skip to main content

The Chl a Carboxylic Biosynthetic Routes: Conversion of Chlide a to Chl a

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1102 Accesses

Abstract

Most of the chlorophyll a (Chl a) in higher and lower plants is formed by esterification of chlorophyllide a (Chlide a) (Fig. 10.1). A minor Chl a fraction esterified with long chain fatty acids (LCFA) other than phytol is also formed from MV protochlorophyllide a E (Pchlide a E) as described in Chap. 9. In this section emphasis will be placed on the biosynthetic heterogeneity of Chl a formed by esterification of Chlide a with phytol.

The first step in accomplishing anything is the belief that it can be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856

    Article  CAS  Google Scholar 

  • Akoyunoglou G, Tsakiris S, Argyroudi-Akoyunoglou JH (1981) Independent growth of the photosystem I and II units. The role of the light-harvesting pigment-protein complexes. In: Akoyunoglou G (ed) Photosynthesis V. Chloroplast development. Balaban International Science Services, Philadelphia, pp 523–533

    Google Scholar 

  • Alberte RS, Thornber JP, Naylor AW (1972) Time of appearance of photosystem I and II in chloroplast of greening jack bean leaves. J Exp Bot 23(77):1060–1069

    Article  CAS  Google Scholar 

  • Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207

    CAS  Google Scholar 

  • Benz J, Rudiger W (1981) Chlorophyll biosynthesis: various chlorophyllides as exogenous substrates for chlorophyll synthetase. Z Naturforsch 36c:51–57

    CAS  Google Scholar 

  • Benz J, Wolf C, Rudiger W (1980) Chlorophyll biosynthesis: hydrogenation of geranylgeraniol. Plant Sci Lett 19:225–230

    Article  CAS  Google Scholar 

  • Chisholm S, Olson RJ, Zettler ER et al (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Chisholm SW, Frankel S, Goerike R et al (1992) Prochlorococcus marinus nov. gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    Article  CAS  Google Scholar 

  • Cohen CE, Rebeiz CA (1978) Chloroplast biogenesis 22. Contribution of short wavelength and long wavelength protochlorophyll species to the greening of higher plants. Plant Physiol 61:824–829

    Article  PubMed  CAS  Google Scholar 

  • Cohen CE, Bazzaz MB, Fullet SE et al (1977) Chloroplast biogenesis XX. Accumulation of porphyrin and phorbin pigments in cucumber cotyledons during photoperiodic greening. Plant Physiol 60:743–746

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1984) Bioengineering of photosynthetic membranes: requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Biotech Bioeng 26:481–487

    Article  CAS  Google Scholar 

  • Gaubier P, Wu HJ, Laudie MD et al (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64

    Article  PubMed  CAS  Google Scholar 

  • Goerike R, Repeta D (1992) The pigments of Prochlorococcus marinus. The presence of divinyl-chlorophyll a and b in a marine prochlorophyte. Limnol Oceanogr 37:425–433

    Article  Google Scholar 

  • Helfrich M, Rudiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c:231–238

    Google Scholar 

  • Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84. Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (1975) An intermediate in the phytylation of chlorophyllide a in vivo. Plant Cell Physiol 16:199–202

    CAS  Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadje M et al (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol Cell Biochem 58:97–125

    Article  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Rudiger W (1993) Esterification of chlorphyllide and its implication for thylakoids development. In: Sundqvist C, Ryberg M (eds) Pigment-protein complexes in plastids: synthesis and assembly. Academic, New York, pp 219–240

    Google Scholar 

  • Rudiger W, Benz J, Lempert U et al (1976) Inhibition of phytol accumulation with herbicides: geranylgraniol and dihydrogranylgeraniol-containing chlorophyll from wheat seedlings. Z Pflanzenphysiol 80:131–143

    Google Scholar 

  • Rudiger W, Benz J, Guthoff C (1980) Detection and characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200

    Article  PubMed  CAS  Google Scholar 

  • Schoch S (1978) The esterification of chlorophyllide a in greening bean leaves. Z Naturforsch 33c:712–714

    CAS  Google Scholar 

  • Schoch S, Hehlein C, Rudiger W (1980) Influence of anaerobiosis on chlorophyll biosynthesis in greening oat seedlings (Avena sativa L.). Plant Physiol 66:576–579

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schultz G (1981) Phytol synthesis from geranylgeraniol in spinach chloroplasts. Biochem Biophys Res Commun 99:907–912

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis MJW, Kraay GW (1990) Vertical distribution of pigment composition of a picoplankton prochlorophyte in the subtropical north Atlantic: a combined study of pigments and flow cytometry. Mar Ecol Prog Ser 68:121–127

    Article  CAS  Google Scholar 

  • Wang P, Gao J, Wan C et al (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). The Chl a Carboxylic Biosynthetic Routes: Conversion of Chlide a to Chl a . In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_10

Download citation

Publish with us

Policies and ethics