Skip to main content

Some Major Steps in the Understanding of the Chemistry and Biochemistry of Chl

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1182 Accesses

Abstract

Since the turn of the nineteenth century, the green color of plants has attracted the attention of a wide spectrum of scientists. In this section an effort will be made to list chronologically important scientific discoveries that had a clear impact on our understanding of the structure and function of porphyrins and chlorophyll (Ikeuchi and Murakami 1982) in particular. The many different bacteriochlorophylls are not considered in this presentation.

Meaningful scientific discoveries are those that help humans achieve a better understanding of themselves, of their environment and of the universe at large, as well as those that contribute to the betterment of the human, spiritual, psychological and physical condition.

(Constantin A. Rebeiz)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light–dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    CAS  Google Scholar 

  • Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856

    CAS  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE et al (1980) The protochlorophyll ide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 111:251–258

    PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G et al (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    PubMed  CAS  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ et al (1979) Order of assembly of the four pyrrole rings during the biosynthesis of the natural porphyrins. J Chem Soc Chem Commun:539–541

    Google Scholar 

  • Bazzaz MB, Rebeiz CA (1979) Chloroplast culture V. Spectrofluorometric determination of chlorophyll(ide) a and b and pheophytin (or pheophorbide) a and b in unsegregated pigment mixtures. Photochem Photobiol 30:709–721

    CAS  Google Scholar 

  • Beale SI, Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labelled precursors in greening plant tissues. Plant Physiol 53:297–296

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1979) Chloroplast biogenesis XXVII. Detection of novel chlorophyll and chlorophyll precursors in higher plants. Biochem Biophys Res Commun 88:365–472

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980a) Chloroplast biogenesis 30. Chlorophyll(ide) (E459F675) and Chlorophyll(ide) (E449F675) the first detectable products of divinyl and monovinyl protochlorophyll photoreduction. Plant Sci Lett 18:343–350

    CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980b) Chloroplast biogenesis. Detection of divinyl protochlorophyllide in higher plants. J Biol Chem 255:1266–1272

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1980c) Chloroplast biogenesis. Detection of divinyl protochlorophyllide ester in higher plants. Biochemistry 19:4875–4883

    PubMed  CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1982) Chloroplast biogenesis: detection of monovinyl magnesium protoporphyrin monoester and other monovinyl magnesium porphyrins in higher plants. J Biol Chem 257:1360–1371

    PubMed  CAS  Google Scholar 

  • Belanger FC, Dugan JX, Rebeiz CA (1982) Chloroplast biogenesis: identification of chlorophyllide a (E458F674) as a divinyl chlorophyllide a. J Biol Chem 257:4849–4858

    PubMed  CAS  Google Scholar 

  • Bogorad L (1958) The enzymic synthesis of porphyrins from porphobilinogen. I. Uroporphyrinogen I. J Biol Chem 233:501–509

    PubMed  CAS  Google Scholar 

  • Bogorad L, Granick S (1953a) Protoporphyrin precursors produced by a Chlorella mutant. J Biol Chem 202:793–800

    PubMed  CAS  Google Scholar 

  • Bogorad L, Granick S (1953b) The enzymatic synthesis of porphyrins from porphobilinogen. Proc Natl Acad Sci 39:1176–1188

    PubMed  CAS  Google Scholar 

  • Borodin A (1882) Botan Ztg 40:608

    Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    PubMed  CAS  Google Scholar 

  • Closs GL, Katz JJ, Pennington FC et al (1963) Nuclear magnetic resonance spectra and molecular association of chlorophyll a and b, methyl chlorophyllides, pheophytins, and methyl pheophorbides. J Am Chem Soc 85:3809–3821

    Google Scholar 

  • Cookson GH, Rimington C (1954) Porphobilinogen. Biochem J 57:476–484

    PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982a) Chloroplast culture IX. Chlorophyll(ide) a biosynthesis in vitro at rates higher than in vivo. Biochem Biophys Res Commun 106:466–470

    PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1982b) Chloroplast culture VIII. A new effect of kinetin in enhancing the synthesis and accumulation of protochlorophyllide in vitro. Biochem Biophys Res Commun 104:837–843

    PubMed  CAS  Google Scholar 

  • Daniell H, Rebeiz CA (1984) Bioengineering of photosynthetic membranes: requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Biotechnol Bioeng 26:481–487

    PubMed  CAS  Google Scholar 

  • Dougherty RC, Strain HH, Svec WA et al (1970) The role of chlorophyll b in photosynthesis: hypothesis. J Am Chem Soc 92:2826

    Google Scholar 

  • Dresel EIB, Falk JE (1956) Studies on the biosynthesis of blood pigments. 2. Haem and porphyrin formation in intact erythrocytes. Biochem J 63:72–79

    PubMed  CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982a) Chloroplast biogenesis 38. Quantitative detection of a chlorophyllide b pool in higher plants. Biochim Biophys Acta 714:248–260

    Google Scholar 

  • Duggan JX, Rebeiz CA (1982b) Chloroplast biogenesis 42. Conversion of DV chlorophyllide a to monovinyl chlorophyllide a in vivo and in vitro. Plant Sci Lett 27:137–145

    CAS  Google Scholar 

  • Duggan JX, Rebeiz CA (1982c) Chloroplast biogenesis 37: induction of chlorophyllide a (E459F675) accumulation in higher plants. Plant Sci Lett 24:27–37

    CAS  Google Scholar 

  • Ellsworth RK, Aronoff S (1969) Investigations of the biogenesis of chlorophyll a. IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethyl ester and Mg-vinylpheoporphine a5, obtained from Chlorella mutants. Arch Biochem Biophys 130:374–383

    PubMed  CAS  Google Scholar 

  • Fischer H, Lambrecht R (1937) Z Physiol Chem 249:1

    Google Scholar 

  • Fischer H, Lambrecht R (1938) Z Physiol Chem 253:1

    CAS  Google Scholar 

  • Fischer FG, Lowenberg K (1928) Ann Chem 464:469

    Google Scholar 

  • Fischer FG, Lowenberg K (1929) Ann Chem 475:183

    CAS  Google Scholar 

  • Fischer H, Oestreicher A (1940) Protochlorophyll precursor of chlorophyll. Z Physiol Chem 262:243

    Google Scholar 

  • Fischer H, Orth H (1937) Die Chimie des Pyrrols. Akad. Verlagsges, Leipzig

    Google Scholar 

  • Fischer H, Stern A (1935) Ann Chem 520:88

    CAS  Google Scholar 

  • Fischer H, Stern A (1940) Die Chimie des Pyrroles. Kademische Verlagsgesellschaft

    Google Scholar 

  • Fischer H, Mittenzwei H, Oestreicher A (1939) Z Physiol Chem 257:IV

    CAS  Google Scholar 

  • Fremy E (1860) Compt Rend 50:405

    Google Scholar 

  • Gibson KD, Neuberger A, Tait GH (1963) Studies on the biosynthesis of porphyrins and bacteriochlorophyll by Rhodopseudomonas spheroides. S-adenosylmethionine-magnesium protoporphyrin methyltransferase. Biochem J 88:325–334

    PubMed  CAS  Google Scholar 

  • Goldberg A, Ashenbrucker M, Cartwright GE et al (1956) Studies on the biosynthesis of heme in vitro by avian erythrocytes. Blood 11:821–833

    PubMed  CAS  Google Scholar 

  • Gorchein A (1972) Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells. Biochem J 127:97–106

    PubMed  CAS  Google Scholar 

  • Granick S (1948a) Protoporphyrin 9 as a precursor of chlorophyll. J Biol Chem 172:717–727

    PubMed  CAS  Google Scholar 

  • Granick S (1948b) Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem 175:333–342

    PubMed  CAS  Google Scholar 

  • Granick S (1950) Magnesium vinyl pheoporphyrin a 5, another intermediate in the biological synthesis of chlorophyll. J Biol Chem 183:713–730

    CAS  Google Scholar 

  • Granick S (1954) Enzymatic conversion of delta-aminolevulinic acid to porphobilinogen. Science 120:1105–1106

    PubMed  CAS  Google Scholar 

  • Granick S (1961) Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem 236:1168–1172

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1974) Source of reducing equivalents for the in vitro synthesis of chlorophyll from protochlorophyll. FEBS Lett 46:301–304

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    PubMed  CAS  Google Scholar 

  • Holt AS, Morley HV (1959) Proposed structure of chlorophyll d. Can J Chem 37:507

    Google Scholar 

  • Ikeuchi M, Murakami S (1982) Measurement and identification of NADPH: protochlorophyll ide oxidoreductase solubilized with Triton-X-100 from etioplast membranes of squash cotyledons. Plant Cell Physiol 23:1089–1099

    CAS  Google Scholar 

  • Ioannides IM, Shedbalkar VP, Rebeiz CA (1997) Quantitative determination of 2-monovinyl protochlorophyll(ide) b by spectrofluorometry. Anal Biochem 249:241–244

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW et al (1995) Expression of the chlI, chlD and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271(28):1662–1667

    Google Scholar 

  • Jones OTG (1963) The inhibition of bacteriochlorophyll biosynthesis in Rhodopseudomonas spheroides by 8-hydroxyquinoline. Biochem J 88:335–343

    PubMed  CAS  Google Scholar 

  • Jones OTG (1966) A protein-protochlorophyll complex obtained from inner seed coats of Cucurbita pepo. Biochem J 101:153–160

    PubMed  CAS  Google Scholar 

  • Jope EM, O’Brion JR (1945) Spectral absorption properties and fluorescence of coproporphyrin I and III and the melting point of their tetramethyl esters. Biochem J 39:239–245

    PubMed  CAS  Google Scholar 

  • Jordan PM, Seehra JS (1979) The biosynthesis of uroporphyrinogen III: order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104:364–366

    PubMed  CAS  Google Scholar 

  • Katz JJ, Closs GL, Pennington FC et al (1963) Infrared spectra of methyl chlorophyllides and pheophytins in various solvents. J Am Chem Soc 85:3801

    Google Scholar 

  • Kim JS, Rebeiz CA (1996) Origin of the chlorophyll a biosynthetic heterogeneity in higher plants. J Biochem Mol Biol 29:327–334

    CAS  Google Scholar 

  • Kolossov VL, Kopetz KJ, Rebeiz CA (2003) Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem Photobiol 78:184–196

    PubMed  CAS  Google Scholar 

  • Kopetz KJ, Kolossov VL, Rebeiz CA (2004) Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors. Anal Biochem 329:207–219

    PubMed  CAS  Google Scholar 

  • Koski VM (1950) Chlorophyll formation in seedlings of Zea mays L. Arch Biochem 29:339–343

    PubMed  CAS  Google Scholar 

  • Koski VM, Smith JHC (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562

    PubMed  CAS  Google Scholar 

  • Kuster W (1913) Z Physiol Chem 82:463–483

    Google Scholar 

  • Lipson RL, Baldes EJ, Olsen AM (1961) Hematoporphyrin-derivative fluorescence in malignant neoplasms. J Natl Cancer Inst 26:1–11

    Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1

    Google Scholar 

  • Mattheis JR, Rebeiz CA (1977a) Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium protoporphyrin monoester by developing chloroplasts. J Biol Chem 252:4022–4024

    PubMed  CAS  Google Scholar 

  • Mattheis JR, Rebeiz CA (1977b) Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts. J Biol Chem 252:8347–8349

    PubMed  CAS  Google Scholar 

  • Mauzerall D, Granick S (1958) Porphyrin biosynthesis in erythrocytes. III. Uroporphyrinogen and its decarboxylation. J Biol Chem 232:1141–1162

    PubMed  CAS  Google Scholar 

  • McCarthy SA, Belanger FC, Rebeiz CA (1981) Chloroplast biogenesis: detection of a magnesium protoporphyrin diester pool in plants. Biochemistry 20:5080–5087

    PubMed  CAS  Google Scholar 

  • McCarthy SA, Mattheis JR, Rebeiz CA (1982) Chloroplast biogenesis: biosynthesis of protochlorophyll(ide) via the acidic and fully esterified biosynthetic branches in higher plants. Biochemistry 21:242–247

    PubMed  CAS  Google Scholar 

  • Monteverde NA (1893) Acta Horti Petrolitani 13:148

    Google Scholar 

  • Muir HM, Neuberger A (1949) The biogenesis of porphyrins. The distribution of 15N in the ring system. Biochem J 45:163

    Google Scholar 

  • Nencki M (1896) Ber Deut Chem Ges 29:2877

    Google Scholar 

  • Neve RA, Labbe RF (1956) Reduced uroporphyrinogen III in the biosynthesis of heme. J Am Chem Soc 78:691–692

    CAS  Google Scholar 

  • Noack K, Kiessling W (1929) Z Physiol Chem 182:13

    CAS  Google Scholar 

  • Noack K, Kiessling W (1930) Z Physiol Chem 182:97

    Google Scholar 

  • Noack K, Scneider E (1933) Naturwisswnchaften 21:835

    CAS  Google Scholar 

  • Pardo AD, Chereskin BM, Castelfranco PA et al (1980) ATP requirement for Mg chelatase in developing chloroplasts. Plant Physiol 65:956–960

    PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific NADPH-dependent enzyme. Biochemistry 31:8460–8464

    PubMed  CAS  Google Scholar 

  • Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231:164–169

    PubMed  CAS  Google Scholar 

  • Pelletier PJ, Caventou JB (1818) Ann Chim et Phys 9:194–196

    Google Scholar 

  • Porra RJ, Schafer W, Cmiel E et al (1993) Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of higher plants (Zea mays). FEBS 323:31–34

    CAS  Google Scholar 

  • Pottier RH, Chow YFA, Laplante JP et al (1986) Non invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol 44:679–687

    PubMed  CAS  Google Scholar 

  • Poulson R, Polglase WJ (1975) The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase activity in mitochondrial extracts of Saccharomyces cerevisiae. J Biol Chem 250:1269–1274

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971a) Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:33–37

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Castelfranco P (1971b) Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol 47:24–32

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Yaghi M, Abou Haidar M et al (1970) Protochlorophyll biosynthesis in cucumber (Cucumis sativus, L) cotyledons. Plant Physiol 46:57–63

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975a) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB et al (1975b) Chloroplast biogenesis. Biosynthesis and accumulation of Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch Biochem Biophys 166:446–465

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Belanger FC, McCarthy SA et al (1981) Biosynthesis and accumulation of novel chlorophyll a and b chromophoric species in green plants. In: Akoyounoglou G (ed) Proceedings of the 5th international congress on photosynthesis, vol V. International Science Services, Jerusalem, pp 197–192

    Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadje M et al (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol Cell Biochem 58:97–125

    Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Daniell H (1984a) Chloroplast culture X: thylakoid assembly in vitro. Isr J Bot 33:225–235

    CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Hopen HJ et al (1984b) Photodynamic herbicides: 1. Concept and phenomenology. Enyme Microbiol Technol 6:390–401

    CAS  Google Scholar 

  • Rebeiz CA, Juvik JA, Rebeiz CC (1988a) Porphyric insecticides 1. Concept and phenomenology. Pestic Biochem Physiol 30:11–27

    CAS  Google Scholar 

  • Rebeiz CA, Tripathy BC, Mayasich JM (1988b) Chloroplast biogenesis 61: kinetic analysis of precursor-product relationships in complex biosynthetic pathways. J Theor Biol 133:319–326

    CAS  Google Scholar 

  • Rebeiz CA, Ioannides IM, Kolossov V et al (1999) Chloroplast biogenesis 80. Proposal of a unified multibranched chlorophyll a/b biosynthetic pathway. Photosynthetica 36:117–128

    CAS  Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Rebeiz CA, Kolossov VL, Kopetz KK (2004) Chloroplast bioengineering: photosynthetic efficiency, modulation of the photosynthetic unit size, and the agriculture of the future. In: Nelson DW (ed) Agricultural applications in green chemistry, vol 887. American Chemical Society, Washington, DC, pp 81–105

    Google Scholar 

  • Rimington C, Sveinsson SL (1950) The spectrophotometric determination of uroporphyrin. Scand J Clin Lab Invest 2:209–216

    PubMed  CAS  Google Scholar 

  • Sano S (1966) 2,4-Bis-(B-hydroxypropionic acid) deuteroporphyrinogen IX, a possible intermediate between coproporphyrinogen III and Protoporphyrin IX. J Biol Chem 241:5276–5283

    PubMed  CAS  Google Scholar 

  • Sano S, Granick S (1961) Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem 236:1173–1180

    PubMed  CAS  Google Scholar 

  • Santel HJ, Apel K (1981) The protochlorophyll ide Holochrome of Barley (Hordeum vulgare L.). The effect of light on the NADPH: protochlorophyll ide oxidoreductase. Eur J Biochem 120:95–103

    PubMed  CAS  Google Scholar 

  • Schoch S (1978) The esterification of chlorphyllide a in greening bean leaves. Z Naturforsch 33 c:712–714

    Google Scholar 

  • Shedbalkar VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266

    PubMed  CAS  Google Scholar 

  • Shedbalkar VP, Ioannides IM, Rebeiz CA (1991) Chloroplast biogenesis. Detection of monovinyl protochlorophyll(ide) b in plants. J Biol Chem 266:17151–17157

    PubMed  CAS  Google Scholar 

  • Shemin D (1968) Mechanism and control of pyrrole synthesis. In: Goodwin GT (ed) Porphyrins and related products. Academic, New York, pp 75–89

    Google Scholar 

  • Shemin D, Kumin S (1952) The preparation of S-succinyl coenzyme A. J Biol Chem 198:827

    Google Scholar 

  • Shemin D, Russel CS (1953) J Am Chem Soc 76:4873

    Google Scholar 

  • Shemin D, Wittenberg J (1951) Location in protoporphyrin of the carbon atoms derived from the alpha-carbon of glycine. J Biol Chem 192:315

    Google Scholar 

  • Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44:147–172

    CAS  Google Scholar 

  • Sironval C, Kuyper Y, Michel JM et al (1967) The primary photoact in the conversion of protochlorophyllide into chlorophyllide. Stud Biophys 5:43–50

    Google Scholar 

  • Smith JHC (1948) Protochlorophyll, precursor of chlorophyll. Arch Biochem 19:449–454

    PubMed  CAS  Google Scholar 

  • Smith JHC (1952) Yearb Carneg Inst 51:151

    Google Scholar 

  • Smith JHC, Benitez A (1954) The effect of temperature on the conversion of protochlorophyll to chlorophyll a in etiolated barley leaves. Plant Physiol 29:135–143

    PubMed  CAS  Google Scholar 

  • Smith JHC, Kupke DW (1956) Some properties of extracted protochlorophyll holochrome. Nature 178:751–752

    CAS  Google Scholar 

  • Smith BB, Rebeiz CA (1977) Spectrofluorometric determination of Mg-protoporphyrin monoester and longer wavelength metalloporphyrins in the presence of Zn-protoporphyrin. Photochem Photobiol 26:527–532

    CAS  Google Scholar 

  • Stokes GG (1864) Proc R Soc 13:144

    Google Scholar 

  • Tait GH, Gibson HD (1961) The enzymic formation of magnesium protoporphyrin monomethyl ester. Biochim Biophys Acta 52:614–616

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis. Quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal Biochem 149:43–61

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    PubMed  CAS  Google Scholar 

  • Tswett M (1906) Ber Deut Bot Ges 24:384

    CAS  Google Scholar 

  • Verdeil F (1844) J Prakt Chem 33:478

    Google Scholar 

  • Walker CJ, Mansfield KE, Rezzano IN et al (1988) The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies of the mechanism and specificity of the reaction sequence. Biochem J 255:685–692

    PubMed  CAS  Google Scholar 

  • Westall RG (1952) Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature 170:614–616

    Google Scholar 

  • Willstatter R, Asahina Y (1909) Ann Chem 373:227

    Google Scholar 

  • Willsttater R, Stoll A (1910) Ann Chem 378:18

    Google Scholar 

  • Willsttater R, Stoll A (1911) Ann Chem 387:317

    Google Scholar 

  • Willsttater R, Stoll A (1913) Untersuchungen uber Chlorophyll. Springer, Berlin

    Google Scholar 

  • Wolff JB, Price L (1957) Terminal steps of chlorophyll a biosynthesis in higher plants. Arch Biochem Biophys 72:293–301

    PubMed  CAS  Google Scholar 

  • Wu SM, Rebeiz CA (1988) Chloroplast biogenesis. Molecular structure of short wavelength chlorophyll a (E432 F662). Phytochemistry 27:353–356

    CAS  Google Scholar 

  • Wu SM, Mayasich JM, Rebeiz CA (1989) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry. Anal Biochem 178:294–300

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). Some Major Steps in the Understanding of the Chemistry and Biochemistry of Chl. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_1

Download citation

Publish with us

Policies and ethics