Skip to main content

Methods for Forward and Inverse Scattering in Ultrasound Tomography

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Abstract

Ultrasonic computed tomography (UCT) is a potentially useful technique that has been explored for decades in the context of medical imaging. UCT can provide quantitative images of acoustical parameters such as speed of sound, attenuation, and density from measurements of pressure fields. Throughout the years, several algorithms that rely on different wave propagation models have been developed. In this chapter, the fundamentals of forward and inverse solvers for ultrasonic tomography will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The eikonal equation can alternatively be derived from Fermat’s principle, and therefore this principle can also be used for ray tracing. The interested reader can refer to acoustics textbooks such as Pierce (1989).

  2. 2.

    Equation 14.13 can actually be derived from direct first-order simplifications of the wave equation which are not presented here for brevity. The interested reader may refer to Jensen (1990).

  3. 3.

    This approach is in fact a synthetic aperture reconstruction method (Soumekh 1999) equivalent to the delay-and-sum algorithm. A commonly used variation is to perform the backpropagation operation using envelope-detected data, which results in a spatial compounding reconstruction method (Trahey et al. 1986).

  4. 4.

    Density information from dispersive media can also be isolated from \(O_\rho (k,\mathbf {r})\) profiles at different frequencies if the dispersion can be properly modeled as a function of \(\omega \).

  5. 5.

    In general, distortions may arise when reconstructing cross-sections of non-cylindrical objects using 2D data. The interested reader may refer to (Lavarello and Oelze 2009; Duncan et al. 2009).

  6. 6.

    See Sect. 14.5 for a discussion on the discretization of the wave equation.

  7. 7.

    Direct algebraic manipulation reveals that, for the linear-operator case (i.e., \(R_m(f) = \mathbf{R }_m \cdot \bar{\mathbf{f }}\)), (14.56) reduces to (14.52).

  8. 8.

    Like in the case of sound speed imaging with DBIM, frequency hopping can be used to improve the spatial resolution of density tomograms constructed with the T-matrix formulation.

References

  • Green PS, Schaefer LF, Jones ED, Suarez JR (1974) A new high-performance ultrasonic camera system, in Acoustical Holography, 5th edn. Wiley, New York, pp 493–504

    Book  Google Scholar 

  • Marich KW, Green PS, Suarez JR, Zatz LM, Macovski A (March 1975) Real-time imaging with a new ultrasonic camera: Part I, in vitro experimental studies on transmission imaging of biological structures. J Clin Ultrasound 3(1):5–16

    Article  Google Scholar 

  • Heyser R, Le Croissette D (1973) Transmission ultrasonography. In: Proceedings of the IEEE ultrasonics, symposium, pp 7–9

    Google Scholar 

  • Heyser RC, Croissette DHL (1974) A new ultrasonic imaging system using time delay spectrometry. Ultrasound Med Biol 1(2):119–131

    Article  PubMed  CAS  Google Scholar 

  • Hounsfield GN (December 1973) Computerized transverse axial scanning (tomography): I. Description of system. Br J Radiol 46(552):1016–1022

    Article  Google Scholar 

  • Kuhl DE, Edwards RQ (April 1963) Image separation radioisotope scanning. Radiology 80(4):653–662

    Google Scholar 

  • Phelps ME, Hoffman EJ, Mullani NA, Higgins CS, Ter Pogossian MM (February 1976) Design considerations for a positron emission transaxial tomogram (PETT III). IEEE Trans Nucl Sci 23(1):516–522

    Article  Google Scholar 

  • Damadian R (March 1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153

    Article  Google Scholar 

  • Lauterbur PC (1974) Magnetic resonance zeugmatography. Pure Appl Chem 40(1):149157

    Google Scholar 

  • Pierce AD (1989) Acoustics: an introduction to its physical principles and applications. Acoustical Society of America, Woodbury

    Google Scholar 

  • Carson PL, Oughton TV, Hendee WR, Ahuja AS (1977) Imaging soft tissue through bone with ultrasound transmission tomography by reconstruction. Med Phys 4(4):302–309

    Article  PubMed  CAS  Google Scholar 

  • Dines KA, Fry FJ, Patrick JT, Gilmor RL (October 1981) Computerized ultrasound tomography of the human head: experimental results. Ultrason Imaging 3(4):342–351

    Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64(2):423–457

    Article  PubMed  CAS  Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1980) Compilation of empirical ultrasonic properties of mammalian tissues II. J Acoust Soc Am 68(1):93–108

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf J, Johnson S, Samayoa W, Duck F (1975) Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles in Acoustical Holography vol 6. pp 71–90

    Google Scholar 

  • Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9(2):198–217

    Article  Google Scholar 

  • Bracewell RN, Riddle AC (1967) Inversion of fan-beam scans in radio astronomy. Astrophysl J 150(2):427–434

    Article  Google Scholar 

  • Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstructions from radiographs and electron micrographs: application of convolutions instead of fourier transforms. Proc Nat Acad Scie USA 68(9):2236–2240

    Article  CAS  Google Scholar 

  • Shepp LA, Logan BF (1971) The fourier reconstruction of a head section. IEEE Trans Nucl Sci 68(9):2236–2240

    Google Scholar 

  • Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6(1):81–94

    PubMed  CAS  Google Scholar 

  • Glover GH (1978) Ultrasonic fan beam scanner for computerized time-of-flight tomography. U.S. Patent 4,075,883

    Google Scholar 

  • Greenleaf J, Johnson S, Lee S, Herman G, Wood E (1974) Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections, in Acoustical Holography vol 5. pp 591–603

    Google Scholar 

  • Dines KA, Kak AC (1979) Ultrasonic attenuation tomography of soft tissues. Ultrason Imaging 1(1):16–33

    PubMed  CAS  Google Scholar 

  • Klepper JR, Brandenburger GH, Mimbs JW, Sobel BE, Miller JG (1981) Application of phase-insensitive detection and frequency-dependent measurements to computed ultrasonic attenuation tomography. IEEE Trans Biomed Eng 28(2):186–201

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf JF, Johnson SA, Lent AH (1978) Measurement of spatial distribution of refractive index in tissues by ultrasonic computer assisted tomography. Ultrasound Med Biol 3(4):327–339

    Article  PubMed  CAS  Google Scholar 

  • Jakowatz CV, Kak AC (1976) Computerized tomographic imaging using X-rays and ultrasound. School of Electrical Engineering, Purdue University, Tech Rep TR-EE 76–26

    Google Scholar 

  • Johnson SA, Greenleaf JF, Samayoa WA, Duck FA, Sjostrand J (1975) Reconstruction of three-dimensional velocity fields and other parameters by acoustic ray tracing. In: Proceedings of the IEEE Ultrasonics, Symposium, pp 46–51

    Google Scholar 

  • Andersen AH, Kak AC (1982) Digital ray tracing in two-dimensional refractive fields. J Acoust Soc Am 34(10):1562–1582

    Google Scholar 

  • Andersen AH (1986) A top-down philosophy for accurate numerical ray tracing. J Acoust Soc Am 80(2):656–660

    Article  Google Scholar 

  • Norton SJ (1987) Computing ray trajectories between two points: a solution to the ray-linking problem. J Opt Soc Am 4(10):1919–1922

    Article  Google Scholar 

  • Julian BR, Gubbins D (1977) Three-dimensional seismic ray tracing. J Geophys 43(1–2):95–113

    Google Scholar 

  • Schomberg H (1978) An improved approach to reconstructive ultrasound tomography. J Phys D: Appl Phys 11(15):L181–L185

    Article  Google Scholar 

  • Lytle RJ, Dines KA (1980) Iterative ray tracing between boreholes for underground image reconstruction. IEEE Trans Geosci Remote Sens 18(3):234–240

    Article  Google Scholar 

  • Andersen AH (1987) Ray linking for computed tomography by rebinning of projection data. J Acoustl Soc Am 81(4):1190–1192

    Article  Google Scholar 

  • Moser TJ (1991) Shortest path calculation of seismic rays. Geophysics 56(1):59–67

    Article  Google Scholar 

  • Klimes L, Kvasnicka M (1994) 3-D network ray tracing. Geophys J Intl 116(3):726–738

    Article  Google Scholar 

  • Song L, Zhang S (1998) Stabilizing the iterative solution to ultrasonic transmission tomography. IEEE Trans Ultrason, Ferroelectr, Freq Control 45(4):1117–1120

    Article  CAS  Google Scholar 

  • Li S, Jackowski M, Dione DP, Varslot T, Staib LH, Mueller K (2010) Refraction corrected transmission ultrasound computed tomography for application in breast imaging. Med Phys 37(3):201–233

    Google Scholar 

  • Denis F, Basset O, Gimenez G (1995) Ultrasonic transmission tomography in refracting media: reduction of refraction artifacts by curved-ray techniques. IEEE Trans Med Imaging 14(1):173–188

    Article  PubMed  CAS  Google Scholar 

  • Norton SJ, Linzer M (1982) Correcting for ray refraction in velocity and attenuation tomography:a perturbation approach. Ultrason Imaging 4(3):201–233

    PubMed  CAS  Google Scholar 

  • Farrell EJ (1981) Tomographic imaging of attenuation with simulation correction for refraction. Ultrason Imaging 3(2):144–163

    PubMed  CAS  Google Scholar 

  • Pan KM, Liu CN (1981) Tomographic reconstruction of ultrasonic attenuation with correction for refractive errors. IBM J Res Dev 25(1):71–82

    Article  Google Scholar 

  • Jensen JA (1990) A model for the propagation and scattering of ultrasound in tissue. J Acoustl Soc Am 89(1):182–190

    Article  Google Scholar 

  • Norton S, Linzer M (1979a) Ultrasonic reflectivity tomography: reconstruction with circular transducer arrays. Ultrason Imaging 1(2):210–231

    PubMed  CAS  Google Scholar 

  • Norton SJ, Linzer M (1979b) Ultrasonic reflectivity imaging in three dimensions: reconstruction with spherical transducer arrays. Ultrason Imaging 1(3):210–231

    PubMed  CAS  Google Scholar 

  • Soumekh M (1999) Synthetic aperture radar signal processing with matlab algorithms. Wiley, New York

    Google Scholar 

  • Trahey GE, Smith SW, von Ramm OT (1986) Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding. IEEE Trans Ultrason, Ferroelectr, Freq Control 33(3):257–264

    Article  CAS  Google Scholar 

  • Ashfaq M, Ermert H (2007) Acoustic tomography scheme for small animal tissue characterization. In: Proceedings of the IEEE ultrasonics, symposium, pp 977–980

    Google Scholar 

  • Schmidt S, Duric N, Li C, Roy O, Huang Z-F (2011) Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast. Medl Phys 38(2):998–1007

    Article  Google Scholar 

  • Koch A, Koch I, Hansen C, Lerch R, Ermert H (2012) Numerical ray-tracing in full angle spatial compounding. Acoust Imaging 31:103–113

    Article  Google Scholar 

  • Glover GH (1977) Computerized time-of-flight ultrasonic tomography for breast examination. Ultrasound Med Biol 3(2–3):117–127

    Article  PubMed  CAS  Google Scholar 

  • Carson PL, Meyer CR, Scherzinger AL, Oughton TV (1981) Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound. Science 214(4525):1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf JF, Bahn RC (1981) Clinical imaging with transmissive ultrasonic computerized tomography. IEEE Trans Biomed Eng 28(2):177–185

    Article  PubMed  CAS  Google Scholar 

  • Schreiman JS, Gisvold JJ, Greenleaf JF, Bahn RC (1984) Ultrasound transmission computed tomography of the breast. Radiology 150(2):523–530

    PubMed  CAS  Google Scholar 

  • Duric N, Littrup P, Babkin A, Chambers D, Azevedo S, Kalinin A, Pevzner R, Tokarev M, Holsapple E, Rama O, Duncan R (2005) Development of ultrasound tomography for breast imaging: technical assessment. Med Phy 32(5):1375–1386

    Article  Google Scholar 

  • Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O, Glide C (2007) Detection of breast cancer with ultrasound tomography: first results with the computed ultrasound risk evaluation (CURE) prototype. Med Phys 34(2):773–785

    Article  PubMed  Google Scholar 

  • Li C, Duric N, Littrup P, Huang L (2009) In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med Biol 35(10):1615–1628

    Article  PubMed  Google Scholar 

  • Jeong J-W, Kim T-S, Shin DC, Do S, Singh M, Marmarelis VZ (2005) Soft tissue differentiation using multiband signatures of high resolution ultrasonic transmission tomography. IEEE Trans Medl Imaging 24(3):399–408

    Article  Google Scholar 

  • Jeong J-W, Shin DC, Do S-H, Blanco C, Klipfel NE, Holmes DR, Hovanessian-Larsen LJ, Marmarelis VZ (2008) Differentiation of cancerous lesions in excised human breast specimens using multiband attenuation profiles from ultrasonic transmission tomography. J Ultrasound Med 27(3):435–451

    PubMed  Google Scholar 

  • Jeong J-W, Shin DC, Marmarelis VZ (2009) Image fusion methodology for efficient interpretation of multiband images in 3D high-resolution ultrasonic transmission tomography. Intl J Imaging Syst Technoly 19(4):277–282

    Article  Google Scholar 

  • Gemmeke H, Ruiter NV (2007) 3D ultrasound computer tomography for medical imaging. Nucl Instrum Methods Phys Res A 580(2):1057–1065

    Article  CAS  Google Scholar 

  • Jirík R, Peterlík I, Ruiter N, Fousek J, Dapp R, Zapf M, Jan J (2012) Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography. IEEE Trans Ultrason, Ferroelectr, Freq Control 59(2):254–264

    Article  Google Scholar 

  • Zhang D, Gong X-F (1999) Experimental investigation of the acoustic nonlinearity parameter tomography for excised pathological biological tissues. Ultrasound Med Biol 25(4):593–599

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Chen X, Gong X-F (2001) Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source: theoretical analysis and computer simulations. J Acoust Soc Am 109(3):1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Quan Y, Huang L (2007) Sound-speed tomography using first-arrival transmission ultrasound for a ring array. In: Proceedings of the SPIE, vol 6513. pp 651 306.1-651 306.9

    Google Scholar 

  • Leach Jr RR, Azevedo SG, Berryman JG, Bertete-Aguirre HR, Chambers DH, Mast JE, Littrup P, Duric N, Johnson SA, Wuebbeling F (2002) Comparison of ultrasound tomography methods in circular geometry. In: Proceedings of the SPIE, vol 4687. pp 362–377

    Google Scholar 

  • Mueller RK, Kaveh M, Wade G (1979) Reconstructive tomography and applications to ultrasonics. Proc IEEE 67(4):567–587

    Article  Google Scholar 

  • Mueller RK (1980) Diffraction tomography I: the wave equation. Ultrason Imaging 2(3):213–222

    PubMed  CAS  Google Scholar 

  • Wolf E (1969) Three-dimensional structure determination of semi-transparent objects from holographic data. Opt Commun 1(4):153–156

    Article  Google Scholar 

  • Kak A, Slaney M (2001) Principles of computerized tomographic imaging. SIAM, Philadelphia

    Book  Google Scholar 

  • Chew WC (1995) Waves and fields in inhomogeneous media. IEEE Press, Piscataway

    Google Scholar 

  • Naidu P, Vasuki A, Satyamurthy P, Anand L (1995) Diffraction tomographic imaging with a circular array. IEEE Trans Ultrason, Ferroelectr, Freq Control 42(4):787–789

    Article  Google Scholar 

  • Iwata K, Nagata R (1975) Calculation of refractive index distribution from interferograms using the Born and Rytov’s approximations. Japan J Appl Phys 14(14–1):379–383

    Google Scholar 

  • Devaney A (1981) Inverse-scattering theory within the Rytov approximation. Opt Lett 6(8):374–376

    Article  PubMed  CAS  Google Scholar 

  • Kenue SK, Greenleaf JF (1982) Limited angle multifrequency diffraction tomography. IEEE Trans Sonics Ultrason 29(4):213–216

    Article  Google Scholar 

  • Norton SJ (1983) Generation of separate density and compressibility images in tissue. Ultrason Imaging 5(3):240–252

    PubMed  CAS  Google Scholar 

  • Pan S, Kak A (1983) A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered-backpropagation. IEEE Trans Acoust, Speech Signal Process 31(5):1262–1275

    Article  Google Scholar 

  • Kaveh M, Soumekh M, Greenleaf JF (1984) Signal processing for diffraction tomography. IEEE Trans Sonics and Ultrason 31(4):230–239

    Article  Google Scholar 

  • Soumekh M (1988) Band-limited interpolation from unevenly spaced sampled data. IEEE Trans Acoust, Speech Signal Process 36(1):110–122

    Article  Google Scholar 

  • Devaney A (1982) Inversion formula for inverse scattering within the Born approximation. Opt Lett 7(3):111–112

    Article  PubMed  CAS  Google Scholar 

  • Devaney AJ (1983) A computer simulation study of diffraction tomography. IEEE Trans Biomed Eng 30(7):377–386

    Article  PubMed  CAS  Google Scholar 

  • Sponheim N, Gelius L-G, Johansen I, Stamnes JJ (1991) Quantitative results in ultrasonic tomography of large objects using line sources and curved detector arrays. IEEE Trans Ultrason, Ferroelectr, Freq Control 38(4):370–379

    Article  CAS  Google Scholar 

  • Sponheim N, Gelius L-J, Johansen I, Stamnes JJ (1994) Ultrasonic tomography of biological tissue. Ultrason Imaging 16(1):19–32

    PubMed  CAS  Google Scholar 

  • Devaney AJ, Beylkin G (1984) Diffraction tomography using arbitrary transmitter and receiver surfaces. Ultrason Imaging 6(2):181–193

    PubMed  CAS  Google Scholar 

  • Devaney AJ (1985) Generalized projection-slice theorem for fan beam diffraction tomography. Ultrason Imaging 7(3):264–275

    PubMed  CAS  Google Scholar 

  • Gelius L-G, Johansen I, Sponheim N, Stamnes JJ (1991) A generalized diffraction tomography algorithm. J Acoust Soc Am 89(2):523–528

    Article  Google Scholar 

  • Anastasio M, Pan X (2003) An improved reconstruction algorithm for 3-D diffraction tomography using spherical-wave sources. IEEE Trans Biomed Eng 50(4):517–521

    Article  PubMed  Google Scholar 

  • Devaney AJ (1986) Reconstructive tomography with diffracting wavefields. Inverse Prob 2(2):161–183

    Article  Google Scholar 

  • Ladas KT, Devaney AJ (1991) Generalized ART algorithm for diffraction tomography. Inverse Prob 7(1):109–125

    Article  Google Scholar 

  • Devaney AJ (1985) Variable density acoustic tomography. J Acoust Soc Am 78(1):120–130

    Article  Google Scholar 

  • Moghaddam M, Chew W (1993) Variable density linear acoustic inverse problem. Ultrason Imaging 15(3):255–266

    PubMed  CAS  Google Scholar 

  • Mensah S, Lefebvre JP (1997) Enhanced compressibility tomography. IEEE Trans Ultrason, Ferroelectr, Freq Control 44(6):1245–1252

    Article  Google Scholar 

  • Anastasio MA, Shi D, Deffieux T (2005) Image reconstruction in variable density acoustic tomography. In: Proceedings of the SPIE, vol 5750. pp 326–331

    Google Scholar 

  • Kai A, Sun J, Wade G (1992) Imaging the acoustic nonlinear parameter with diffraction tomography. IEEE Trans Ultrason, Ferroelectr, Freq Control 39(6):708–715

    Article  Google Scholar 

  • Slaney M, Kak A, Larsen L (1984) Limitations of imaging with first-order diffraction tomography. IEEE Trans Microwave Tech 32(8):860–874

    Article  Google Scholar 

  • Robinson B, Greenleaf J (1986) The scattering of ultrasound by cylinders: Implications for diffraction tomography. J Acoust Soc Am 80(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Tsihrintzis GA, Devaney AJ (2000) Higher-order (nonlinear) diffraction tomography: inversion of the Rytov series. IEEE Trans Inf Theory 46(5):1748–1765

    Article  Google Scholar 

  • Wedberg TC, Stamnes JJ (1995) Comparison of phase retrieval methods for optical diffraction tomography. Pure Appl Opt 4(1):39–54

    Article  Google Scholar 

  • Mast TD (1999) Wideband quantitative ultrasonic imaging by time-domain diffraction tomography. J Acoustl Soc Am 106(6):3061–3071

    Article  Google Scholar 

  • Astheimer JP, Waag RC (2008) Born iterative reconstruction using perturbed-phase field estimates. J Acoust Soc Am 124(4):2353–2363

    Article  PubMed  Google Scholar 

  • Johnson S, Tracy M (1983) Inverse scattering solutions by a sinc basis, multiple source, moment method - part I: theory. Ultrason Imaging 5(4):361–375

    Article  PubMed  CAS  Google Scholar 

  • Tracy M, Johnson S (1983) Inverse scattering solutions by a sinc basis, multiple source, moment method - part II: numerical evaluations. Ultrason Imaging 5(4):376–392

    Article  PubMed  CAS  Google Scholar 

  • Johnson S, Zhou Y, Tracy M, Berggren M, Stenger F (1984) Inverse scattering solutions by a sinc basis, multiple source, moment method - part III: fast algorithms. Ultrason Imaging 6(1):103–116

    PubMed  CAS  Google Scholar 

  • Wang YM, Chew WC (1989) An iterative solution of two-dimensional electromagnetic inverse scattering problem. Int J Imaging Syst Technol 1(1):100–108

    Article  Google Scholar 

  • Johnson SA, Stenger F, Wilcox C, Ball J, Berggren MJ (1982) Wave equations and inverse solutions for soft tissue. Acoust Imaging 11:409–424

    Article  Google Scholar 

  • Pourjavid S, Tretiak OJ (1992) Numerical solution of the direct scattering problem through the transformed acoustical wave equation. J Acoust Soc Am 91(2):639–645

    Article  PubMed  CAS  Google Scholar 

  • Berggren MJ, Johnson SA, Carruth BL, Kim WW, Stenger F, Kuhn PK (1996) Ultrasound inverse scattering solutions from transmission and/or reflection data. In: Proceedings of the SPIE, vol 671. pp 114–121

    Google Scholar 

  • Cavicchi T, Johnson S, O’Brien WD Jr (1988) Application of the sinc basis moment method to the reconstruction of infinite circular cylinders. IEEE Trans Ultrason, Ferroelectr, Freq Control 35(1):22–33

    Article  CAS  Google Scholar 

  • Cavicchi T, O’Brien WD Jr (1989) Numerical study of higher-order diffraction tomography via the sinc basis moment method. Ultrason Imaging 11(1):42–74

    PubMed  CAS  Google Scholar 

  • Colton D, Coyle J, Monk P (2000) Recent developments in inverse acoustic scattering theory. SIAM Rev 42(3):369–414

    Article  Google Scholar 

  • Chew WC, Wang YM (1990) Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans Med Imaging 9(2):218–225

    Article  PubMed  CAS  Google Scholar 

  • Borup D, Johnson S, Kim W, Berggren M (1992) Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation. Ultrason Imaging 14(1):69–85

    PubMed  CAS  Google Scholar 

  • Remis RF, van den Berg PM (2000) On the equivalence of the Newton–Kantorovich and distorted Born methods. Inverse Prob 16(1):L1–L4

    Article  Google Scholar 

  • Devaney AJ, Oristaglio ML (1983) Inversion procedure for inverse scattering within the distorted-wave Born approximation. Phys Rev Lett 51(4):237–240

    Article  Google Scholar 

  • Ghosh Roy DN, Roberts J, Schabel M, Norton SJ (2007) Noise propagation in linear and nonlinear inverse scattering. J Acoust Soc Am 121(5):2743–2749

    Article  Google Scholar 

  • Hesford AJ, Chew WC (2010) Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm. J Acoust Soc Am 128(2):679–690

    Article  PubMed  Google Scholar 

  • Kim W, Borup D, Johnson S, Berggren M, ZhouY (1987) Accelerated inverse scattering algorithms for higher contrast objects. In: Proceedings of the IEEE Ultrasonics, Symposium, pp 903–906

    Google Scholar 

  • Chew WC, Lin JH (1995) A frequency-hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microwave Guided Wave Lett 5(12):440–441

    Article  Google Scholar 

  • Haddadin O, Ebbini E (1998) Imaging strongly scattering media using a multiple frequency distorted Born iterative method. IEEE Trans Ultrason, Ferroelectr, Freq Control 45(6):1485–1496

    Article  CAS  Google Scholar 

  • Lavarello RJ, Oelze ML (2008) A study on the reconstruction of moderate contrast targets using the distorted Born iterative method. IEEE Trans Ultrason, Ferroelectr, Freq Control 55(1):112–124

    Article  Google Scholar 

  • Lavarello RJ, Oelze ML (2009) Tomographic reconsruction of three-dimensional volumes using the distorted Born iterative method. IEEE Trans Med Imaging 28:1643–1653

    Article  PubMed  Google Scholar 

  • Duncan DP, Astheimer JP, Waag RC (2009) Scattering calculation and image reconstruction using elevation-focused beams. J Acoust Soc Am 125(5):3101–3119

    Article  PubMed  Google Scholar 

  • Kleinman RE, van den Berg PM (1992) A modified gradient method for two-dimensional problems in tomography. J Comput Appl Math 42(1):17–35

    Article  Google Scholar 

  • Harada H, Wall DJN, Takenaka T, Tanaka M (1995) Conjugate gradient method applied to inverse scattering problem. IEEE Trans Antennas Propag 43(8):784–792

    Article  Google Scholar 

  • Lobel P, Pichot C, Blanc-Feraud L, Barlaud M (1997) Microwave imaging: reconstructions from experimental data using conjugate gradient and enhancement by edge-preserving regularization. Int J Imaging Syst Technol 8(4):337–342

    Article  Google Scholar 

  • Zhang X, Broschat S, Flynn PJ (2004) A numerical study of conjugate gradient directions for an ultrasound inverse problem. J Comput Acoust 12(4):587–604

    Article  Google Scholar 

  • Zhang X, Broschat S, Flynn P (2002) A comparison of material classification techniques for ultrasound inverse imaging. J Acoust Soc Am 111(1):457–467

    Article  PubMed  Google Scholar 

  • Wiskin J, Borup D, Johnson S, Berggren M, Abbott T, Hanover R (2007) Full wave, non-linear, inverse scattering: High resolution quantitative breast tissue tomography. Acoust Imaging 28:183–193

    Article  Google Scholar 

  • van den Berg PM, Kleinman RE (1997) A contrast source inversion method. Inverse Prob 13(6):1607–1620

    Article  Google Scholar 

  • van den Berg PM, van Broekhoven AL, Abubakar A (1999) Extended contrast source inversion method. Inverse Prob 15(5):1325–1344

    Article  Google Scholar 

  • Pelekanos G, Abubakar A, van den Berg PM (2003) Contrast source inversion methods in elastodynamics. J Acoust Soc Am 114(5):2825–2834

    Article  PubMed  Google Scholar 

  • Gordon R (1974) A tutorial on ART (algebraic reconstruction technique). IEEE Trans Nucl Sci 21(3):78–93

    Article  Google Scholar 

  • Natterer F, Wübbeling F (1995) A propagation-backpropagation method for ultrasound tomography. Inverse Prob 11(6):1225–1232

    Article  Google Scholar 

  • Natterer F (1997) An algorithm for 3D ultrasound tomography. In: Chavent G, Sabatier PC (eds) Lecture Notes in Physics, Vol 486: inverse problems of wave propagation and diffraction. Springer, New York, pp 216–225

    Chapter  Google Scholar 

  • Natterer F (2008) Reflectors in wave equation imaging. Wave Motion 45(6):776–784

    Article  Google Scholar 

  • Mast TD, Nachman AI, Waag RC (1997) Focusing and imaging using eigenfunctions of the scattering operator. J Acoust Soc Am 102(2):715–725

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Nachman AI, Waag RC (2000) Quantitative imaging using a time-domain eigenfunction method. J Acoust Soc Am 108(3):899–912

    Article  PubMed  Google Scholar 

  • Waag RC, Lin F, Varslot TK, Astheimer JP (2007) An eigenfunction method for reconstruction of large-scale and high-contrast objects. IEEE Trans Ultrason, Ferroelectr, Freq Control 54(7):1316–1332

    Article  Google Scholar 

  • Kwon S, Jeong M (1998) Ultrasound inverse scattering determination of speed of sound, density and absorption. In: Proceedings of the IEEE Ultrasonics, Symposium, pp 1631–1634

    Google Scholar 

  • Lavarello RJ, Oelze ML (2010) Density imaging using a multiple frequency DBIM approach. IEEE Trans Ultrason, Ferroelectr, Freq Control 57(11):2471–2479

    Article  Google Scholar 

  • Lavarello R, Bond S, Oelze M (2010) Regularized tomographic density imaging using multiple frequency information. In: Proceedings of the IEEE Ultrasonics, Symposium, pp 2336–2339

    Google Scholar 

  • van Dongen KWA, Wright WMD (2007) A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles. J Acoust Soc Am 121(3):1538–1549

    Article  PubMed  Google Scholar 

  • Lin J, Chew W (1996a) Ultrasonic imaging by local shape function method with CGFFT. IEEE Trans Ultrason, Ferroelectr, Freq Control 43(5):956–969

    Article  Google Scholar 

  • Lin JH, Chew WC (1996b) Three-dimensional microwave imaging by local shape function method with CGFFT. In: IEEE antennas and propagation society international. Symposium 3:2148–2151

    Google Scholar 

  • Lavarello RJ, Oelze ML (2009) Density imaging using inverse scattering. J Acoust Soc Am 125(2):793–802

    Article  PubMed  Google Scholar 

  • Lavarello RJ, Oelze ML (2010) Scattering by an arrangement of eccentric cylinders embedded on a coated cylinder with applications to tomographic density imaging. J Acoust Soc Am 127(2):645–648

    Article  PubMed  Google Scholar 

  • Waag RC, Fedewa RJ (2006) A ring transducer system for medical ultrasound research. IEEE Trans Ultrason, Ferroelectr, Freq Control 53(10):1707–1718

    Article  Google Scholar 

  • Johnson SA, Borup DT, Wiskin JW, Natterer F, Wubeling F, Zhang Y, Olsen SC (1999) Apparatus and method for imaging with wavefields using inverse scattering techniques. U.S. Patent 6,005,916

    Google Scholar 

  • Johnson SA, Abbott T, Bell R, Berggren M, Borup D, Robinson D, Wiskin J, Olsen S, Hanover B (2007) Noninvasive breast tissue characterization using ultrasound speed and attenuation. Acoust Imaging 28:147–154

    Article  Google Scholar 

  • Wiskin J, Borup DT, Johnson SA, Berggren M (2012) Non-linear inverse scattering: high resolution quantitative breast tissue tomography. J Acoust Soc Am 131(5):3802–3813

    Article  PubMed  CAS  Google Scholar 

  • Borup DT, Ghandi OP (1985) Calculation of high-resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method. IEEE Trans Microwave Theory Tech 33(5):417–419

    Article  Google Scholar 

  • Cui TJ, Chew WC (1999) Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size. IEEE Trans Geosci Remote Sens 37:2597–2608

    Article  Google Scholar 

  • Xu XM, Liu QH (2002) The BCGS-FFT method for electromagnetic scattering from inhomogeneous objects in a planarly layered medium. IEEE Antennas Wireless Propag Lett 1:77–80

    Article  CAS  Google Scholar 

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348

    Article  Google Scholar 

  • Rokhlin V (1990) Rapid solution of integral equations of scattering theory in two dimensions. J Comput Phys 86(2):414–439

    Article  Google Scholar 

  • Chew WC, Jin J, Michielssen E, Song J (eds) (2001) Fast and efficient algorithms in computational electromagnetics. Artech House, Boston

    Google Scholar 

  • Michielssen E, Jin J-M (2008) Guest editorial for the special issue on large and multiscale computational electromagnetics. IEEE Trans Antennas Propag 56(8):2146–2149

    Article  Google Scholar 

  • Harrington RF (1993) Field computation by moment methods. IEEE Press, New York

    Book  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES–a generalized minimal residual algorithm for solving nonsymmetric linear-systems. SIAM J Sci Stat Comput 7:856–869

    Article  Google Scholar 

  • Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    Article  Google Scholar 

  • Coifman R, Rokhlin V, Wandzura S (1993) The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag Mag 35(3):7–12

    Article  Google Scholar 

  • Koc S, Song JM, Chew WC (1999) Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J Numer Anal 36(3):906–921

    Article  Google Scholar 

  • Song J, Chew WC (2001) Error analysis for the trunction of multipole expansion of vector Green’s functions. IEEE Microwave Wirel Compon Lett 11:311–313

    Article  CAS  Google Scholar 

  • Hastriter ML, Ohnuki S, Chew WC (2003) Error control of the translation operator in 3D MLFMA. Microwave Opt Technol Lett 37(3):184–188

    Article  Google Scholar 

  • Hesford AJ, Waag RC (2010) The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids. J Comput Phys 229:8199–8210

    Article  PubMed  CAS  Google Scholar 

  • Bebendorf M (2000) Approximation of boundary element matrices. Numerische Mathematik 86:565–589

    Article  Google Scholar 

  • Zhao K, Vouvakis MN, Lee J-F (2005) The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromagn Compatibility 47:763–773

    Article  Google Scholar 

  • Shaeffer J (2008) Direct solve of electrically large integral equations for problem sizes to 1 M unknowns. IEEE Trans Antennas Propag 56(8):2306–2313

    Article  Google Scholar 

  • Hesford AJ, Waag RC (2011) Reduced-rank approximations to the far-field transform in the gridded fast multipole method. J Comput Phys (submitted)

    Google Scholar 

  • Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, Morton S, Phillips E, Zhang Y, Volkov V (2008) Parallel computing experiences with CUDA. IEEE Micro 28(4):13–27

    Google Scholar 

  • Roy O, Jovanovic I, Hormati A, Parhizkar R, Vetterli M (2010) Sound speed estimation using wave-based ultrasound tomography: theory and GPU implementation. In: Proceedings of the SPIE, vol 7629. pp 76 290J.1–76 290J.12

    Google Scholar 

  • Wiskin J, Borup D, Johnson S, Berggren M, Robinson D, Smith J, Chen J, Parisky Y, Klock J (2010) Inverse scattering and refraction corrected reflection for breast cancer imaging. In: Proceedings of the SPIE, vol 7629. pp 76 290K.1–76 290K.12

    Google Scholar 

  • Hesford AJ, Chew WC (2006) A frequency-domain formulation of the Frechet derivative to exploit the inherent parallelism of the distorted Born iterative method. Waves Random Complex Media 16(4):495–508

    Article  Google Scholar 

  • Haynes M, Moghaddam M (2010) Large-domain, low-contrast acoustic inverse scattering for ultrasound breast imaging. IEEE Trans Biomed Eng 57(11):2712–2722

    Article  Google Scholar 

  • Andre MP, Janee HS, Martin PJ, Otto GP, Spivey BA, Palmer DA (1997) High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays. Int J Imaging Syst Technol 8(1):137–147

    Article  Google Scholar 

  • Johnson SA, Borup DT, Wiskin JW, Berggren MJ, Zhdanov MS, Bunch K, Eidens R (1997) Application of inverse scattering and other refraction corrected methods to environmental imaging with acoustic or electromagnetic energy. In: Dolic G, Wheeler MJ (eds) Next generation environmental models and computational methods. SIAM, Philadelphia, pp 295–312

    Google Scholar 

  • Parhizkar R, Karbasi A, Vetterli M (2011) Calibration in circular ultrasound tomography devices. In: Proceedings of the IEEE international conference on acoustics, speech and, signal processing. pp 549–552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto J. Lavarello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lavarello, R.J., Hesford, A.J. (2013). Methods for Forward and Inverse Scattering in Ultrasound Tomography. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_14

Download citation

Publish with us

Policies and ethics